The long-term objective of this proposal is to uncover mechanisms involved in the regulation of HNSCC pathogenesis and therapy. Human (dihydro)ceramide syntheses 1-6, (dh)CerS1-6, identified as yeast homologues of the longevity assurance gene 1-6 (LASS1-6) regulate the de novo generation of endogenous ceramides with specific fatty acid chain lengths;for example, whereas (dh)CerS1/LASS1 is responsible for the generation of C18-(dihydro)ceramide, (dh)CerS6/LASS6 generates C16-(dihydro)ceramide. These dihydroceramides are then desaturated to ceramides (with their distinct fatty acid chain lengths) by dihydroceramide desaturase (Des). In the cell, these two enzymatic steps (dihydroceramide synthesis and desaturation) occur in the endoplasmic reticulum (ER). Remarkably, our ongoing mechanistic studies reveal that knock down of LASS6/C16-(dihydro)ceramide induces ER stress, which then triggers mitochondrial apoptosis in HNSCC cells. In addition, treatment of HNSCC cells with known ER stress inducers, such as tunicamycin, results in a rapid degradation of LASS6 protein prior to apoptosis. More importantly, increased levels of C16-ceramide via induction of hl_ASS6 expression enhance resistance, and protect HNSCC cells from ER stress and cell death. Collectively, these data suggest a novel hypothesis that LASSS-generated C16-(dihydro)ceramide plays important roles in the regulation of ER homeostasis, such that down-regulation of this pathway mediates a significant component of the ER stress response, which then leads to apoptosis in HNSCC cells. To test this novel hypothesis, three Specific Aims are proposed: 1) Determine the roles of LASS6/C16-(dihydro)ceramide in the regulation of ER stress in HNSCC cells;2) Identify the mechanisms by which down-regulation of LASS6/C16-(dihydro)ceramide induces ER stress (or a component of the stress), and consequent apoptosis in HNSCC cells;and 3) Establish the in vivo roles and clinical relevance of LASS6/C16-(dihydro)ceramide in HNSCC pathogenesis and/or response to therapy via the regulation of ER stress. Thus, these studies will help determine the roles and mechanisms of action of LASS6/C16- (dihydro)ceramide in the regulation of ER stress in HNSCC cells. Importantly, these results have tremendous implications in unraveling the complexities of ceramide signaling and ER stress, in addition to clear therapeutic implications that will be defined in this proposal.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA097132-07
Application #
7879396
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
7
Fiscal Year
2009
Total Cost
$162,989
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Moorthi, Sitapriya; Burns, Tara Ann; Yu, Gui-Qin et al. (2018) Bcr-Abl regulation of sphingomyelin synthase 1 reveals a novel oncogenic-driven mechanism of protein up-regulation. FASEB J 32:4270-4283
Morris, Thomas G; Borland, Samantha J; Clarke, Christopher J et al. (2018) Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 59:69-78
Coant, Nicolas; García-Barros, Mónica; Zhang, Qifeng et al. (2018) AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene 37:3852-3863
Ren, Jihui; Snider, Justin; Airola, Michael V et al. (2018) Quantification of 3-ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast Saccharomyces cerevisiae. J Lipid Res 59:162-170
Shimizu, Yoshiko; Furuya, Hideki; Tamashiro, Paulette M et al. (2018) Genetic deletion of sphingosine kinase 1 suppresses mouse breast tumor development in an HER2 transgenic model. Carcinogenesis 39:47-55
Carroll, Brittany L; Bonica, Joseph; Shamseddine, Achraf A et al. (2018) A role for caspase-2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells - implications for the CHK1-suppressed pathway. FEBS Open Bio 8:27-40
Xu, Ruijuan; Garcia-Barros, Monica; Wen, Sally et al. (2018) Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ 25:841-856
Coant, Nicolas; Hannun, Yusuf A (2018) Neutral ceramidase: Advances in mechanisms, cell regulation, and roles in cancer. Adv Biol Regul :
Trayssac, Magali; Hannun, Yusuf A; Obeid, Lina M (2018) Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 128:2702-2712
Munshi, Mansa A; Gardin, Justin M; Singh, Ashutosh et al. (2018) The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans. Cell Rep 22:1392-1400

Showing the most recent 10 out of 215 publications