The overall objective of the Sphingolipid Animal Cancer Pathobiology (SACP) Shared Resource Core is to provide the Project Leaders with the ability to utilize animal models of carcinogenesis in the execution of their research projects and to maintain genetically engineered mice for the carcinogenesis models. The SACP Shared Resource Core will serve as an essential resource for the use of all animal manipulations needed by the Projects. By centralizing all aspects of in vivo research, the SACP Core will facilitate more rapid and reliable data and minimize the cost of utilizing animal models. The overall aims of the proposal are:
Specific Aim 1 : Ensure proper planning of in vivo research models, provide necessary facilities and expertise for carcinogenesis models and facilitate use of critical Shared Resources. We will a) assist investigators with choosing and/or designing the most appropriate animal model to test hypotheses, including lipid-based transgenic and gene-altered mice: b) provide essential facilities as well as faculty and staff expertise to support research projects in animal models of carcinogenesis;and c) facilitate access to and use of existing shared resources at SBU, including small animal imaging, drug metabolism and pharmacokinetics, tissue biorepository and transgenic and gene knockout generation facilities.
Specific Aim 2 : Enhance and maximize the utility of animal models and provide complementary and alternative approaches. For this Aim we will a) maintain stocks of breeding animals for the Project investigators;b) assist with utilization of carcinogenesis models;and c) provide Project investigators with alternatives to animal research via generation of cell lines from lipid-based genetically engineered mice.
Specific Aim 3 : Provide investigators with assistance and expertise in data collection, interpretation, analysis and management.
In Aim 3 we will a) provide investigators with expertise in pathology, animal model pathobiology and immunohistochemistry;b) assist with data analysis, interpretation and project progression;and c) facilitate sample storage for future studies in animal models of carcinogenesis. Key personel for the SACP Core include an experienced pathologist and a scientific director for Biobanking. Together, these services will provide the necessary expertise in rodent patholgoy and pathobiology associated with carcinogenesis models in additon to biobanking samples generated from animal models of carcinogenesis. These efforts will facilitate the research in this proposal and will provide the expertise to support the Project Leaders. This core is already evolving as a unique and enabling core that is critical for the success of the Program Project.

Public Health Relevance

The SACP Shared Resource Core will serve as a hub of knowledge and resources for the implementation of pre-clinical research in sphingolipids and cancer. This essential resource will facilitate the discovery and determination of novel targets in carcinogenesis, as well as further the development of novel potential therapeutics. The SACP Core will serve as a crucial first step in determining potential mechanisms, interventions and novel therapeutic targets carcinogenesis.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Stony Brook
United States
Zip Code
Shimizu, Yoshiko; Furuya, Hideki; Tamashiro, Paulette M et al. (2018) Genetic deletion of sphingosine kinase 1 suppresses mouse breast tumor development in an HER2 transgenic model. Carcinogenesis 39:47-55
Carroll, Brittany L; Bonica, Joseph; Shamseddine, Achraf A et al. (2018) A role for caspase-2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells - implications for the CHK1-suppressed pathway. FEBS Open Bio 8:27-40
Xu, Ruijuan; Garcia-Barros, Monica; Wen, Sally et al. (2018) Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ 25:841-856
Coant, Nicolas; Hannun, Yusuf A (2018) Neutral ceramidase: Advances in mechanisms, cell regulation, and roles in cancer. Adv Biol Regul :
Trayssac, Magali; Hannun, Yusuf A; Obeid, Lina M (2018) Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 128:2702-2712
Munshi, Mansa A; Gardin, Justin M; Singh, Ashutosh et al. (2018) The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans. Cell Rep 22:1392-1400
Snider, Justin M; Snider, Ashley J; Obeid, Lina M et al. (2018) Probing de novo sphingolipid metabolism in mammalian cells utilizing mass spectrometry. J Lipid Res 59:1046-1057
Li, Fang; Xu, Ruijuan; Low, Benjamin E et al. (2018) Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates. FASEB J 32:3058-3069
Pulkoski-Gross, Michael J; Jenkins, Meredith L; Truman, Jean-Philip et al. (2018) An intrinsic lipid-binding interface controls sphingosine kinase 1 function. J Lipid Res 59:462-474
Williams, Bianca; Correnti, Jason; Oranu, Amanke et al. (2018) A novel role for ceramide synthase 6 in mouse and human alcoholic steatosis. FASEB J 32:130-142

Showing the most recent 10 out of 215 publications