Core D - Phyllis Gimotty The Biostatistics Core consists of personnel with biostatistical experience. The goals of the Biostatistics Core are to provide biostatistical expertise to program project investigators, and through collaboration use statistical models and other statistical techniques to understand the critical abnormalities in signaling molecules, pathways, and networks that are pathogenetic in melanoma and that have therapeutic relevance. The Biostatistics Core faculty and staff have previous experience in melanoma research and extensive experience with the proposed statistical methodologies and their application to the research studies proposed in this program project. They will provide expertise in the following areas to support its research objectives: (1) statistical methods to study associations among gene-related factors and/or among associated protein-related factors, as well as factors that influence tumor growth in different biological models;(2) statistical design and evaluation strategies to assess the impact of experimental interventions in genes on relevant biological outcomes (cell apoptosis, tumor growth and development, therapeutic response);and (3) statistical decision making tools to make scientifically valid statements related to key scientific hypotheses. The Biostatistics Core members will collaborate with project investigators to interpret and synthesize study findings, and collaborate on the preparation of manuscripts. These collaborations will insure that the projects proposed will have high quality study designs and statistical analysis plans that will provide a solid foundation for statistical models and inferences related to signaling pathways in melanoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA114046-03
Application #
8082802
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
3
Fiscal Year
2010
Total Cost
$188,640
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ojha, Rani; Leli, Nektaria M; Onorati, Angelique et al. (2018) ER translocation of the MAPK pathway drives therapy resistance in BRAF mutant melanoma. Cancer Discov :
Kugel 3rd, Curtis H; Douglass, Stephen M; Webster, Marie R et al. (2018) Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res 24:5347-5356
Nicastri, Michael C; Rebecca, Vito W; Amaravadi, Ravi K et al. (2018) Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Mol Cell Oncol 5:e1395504
Nti, Akosua A; Serrano, Leona W; Sandhu, Harpal S et al. (2018) FREQUENT SUBCLINICAL MACULAR CHANGES IN COMBINED BRAF/MEK INHIBITION WITH HIGH-DOSE HYDROXYCHLOROQUINE AS TREATMENT FOR ADVANCED METASTATIC BRAF MUTANT MELANOMA: Preliminary Results From a Phase I/II Clinical Treatment Trial. Retina :
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Hammerlindl, Heinz; Ravindran Menon, Dinoop; Hammerlindl, Sabrina et al. (2018) Acetylsalicylic Acid Governs the Effect of Sorafenib in RAS-Mutant Cancers. Clin Cancer Res 24:1090-1102
Ecker, Brett L; Kaur, Amanpreet; Douglass, Stephen M et al. (2018) Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov :
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150
Grasso, Michael; Estrada, Michelle A; Berrios, Kiara N et al. (2018) N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK632) Promotes Inhibition of BRAF through the Induction of Inhibited Dimers. J Med Chem 61:5034-5046

Showing the most recent 10 out of 144 publications