The major goals ofthe Core B (Bioinformatics) are to provide the Program with the computational tools and expertise needed to process, analyze, integrate and interpret complex ChlP-Seq and gene expression profiling datasets obtained from normal and malignant T cell progenitors. To date, programmatic needs in these areas have been provided on an ad hoc basis. Creating this Core will provide the Program with dedicated longitudinal informatics and biostatistical support, which is important for the Program's overall success. The facility is headed by Dr. X. Shirley Liu, an experienced, highly productive computational biologist and biostatistician with a track record of innovation in computational analysis of cancer cell epigenetics and gene regulation. Its principle responsibilities will include analysis of ChlP-Seq data obtained from human and murine T-ALL cell lines, human and murine pnmary T-ALLs, and nonnal human and murine thymocyte subsets;analysis of gene expression profiles and/or RNASeq obtained from these cells; and integrative modeling ofthese ChlP-Seq and gene expression datasets.
The specific aims of Core B in the next project period are as follows:
Aim 1. To process, analyze, and integrate ChlP-Seq and gene expression datasets from normal and malignant T cell progenitors Aim 2. To characterize and quantify epigenetic changes associated with T cell differentiation or perturbation of transcription factors in T-ALL cells Aim 3. To advise Program Pis on study design and computational/technological advances Aim 4. To serve as a data repository and resource center for the program and the biomedical research community as a whole

Public Health Relevance

The Bioinformatics Core provides services that are needed forthe Program to meet its overall scientific goals, which are focused on understanding how Notch receptors are activated and turn on the expression of genes that drive the growth and survival of cancer cells. This shared resource provides sophisticated computational biology tools and expertise that allow Program to reach these goals in an expeditious, cost-effective fashion, and in doing contributes to elucidation of fundamental aspects of Notch signaling in cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Johnson, John L; Georgakilas, Georgios; Petrovic, Jelena et al. (2018) Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells. Immunity 48:243-257.e10
Jiang, Peng; Lee, Winston; Li, Xujuan et al. (2018) Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies. Cell Syst 6:343-354.e5
Ryan, Russell J H; Petrovic, Jelena; Rausch, Dylan M et al. (2017) A B Cell Regulome Links Notch to Downstream Oncogenic Pathways in Small B Cell Lymphomas. Cell Rep 21:784-797
McMillan, Brian J; Tibbe, Christine; Drabek, Andrew A et al. (2017) Structural Basis for Regulation of ESCRT-III Complexes by Lgd. Cell Rep 19:1750-1757
Pajcini, Kostandin V; Xu, Lanwei; Shao, Lijian et al. (2017) MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia. Sci Signal 10:
Sajed, Dipti P; Faquin, William C; Carey, Chris et al. (2017) Diffuse Staining for Activated NOTCH1 Correlates With NOTCH1 Mutation Status and Is Associated With Worse Outcome in Adenoid Cystic Carcinoma. Am J Surg Pathol 41:1473-1482
Aster, Jon C; Pear, Warren S; Blacklow, Stephen C (2017) The Varied Roles of Notch in Cancer. Annu Rev Pathol 12:245-275
Seegar, Tom C M; Killingsworth, Lauren B; Saha, Nayanendu et al. (2017) Structural Basis for Regulated Proteolysis by the ?-Secretase ADAM10. Cell 171:1638-1648.e7
Severson, Eric; Arnett, Kelly L; Wang, Hongfang et al. (2017) Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells. Sci Signal 10:
Chiang, Mark Y; Wang, Qing; Gormley, Anna C et al. (2016) High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. Blood 128:2229-2240

Showing the most recent 10 out of 61 publications