This application represents a substantially revised program based on the comments of reviewers in the prior submission. Again, this program project applicant group is represented by The Ohio State University (OSU), the University of Illinois at Chicago (UIC), Research Triangle Institute (RTI), and Bristol-Myers Squibb (B-MS) who have combined their vast collaborative experience in the isolation, structure elucidation, and biological evaluation of natural products, to consummate a consolidated, highly integrated program for the discovery of novel anticancer agents of diverse origin for development as effective cancer chemotherapeutic agents. Plant materials will be collected by established botanists located in tropical countries with the assistance of the NAPRALERT database, and cyanobacteria and filamentous fungi will also be accessed. Organisms acquired will be extracted and evaluated in a diverse battery of relevant mechanism-based, cell based, and tumor-growth related assays currently operational at OSU, UIC, RTI, and B-MS (Projects 1-3;Cores A and C). Dereplication of known active compounds will be accomplished at OSU, UIC, and RTI using computerized literature surveys and LC-MS coupled to bioassays. Bioassay-directed fractionation will be employed (OSU, UIC, RTI;Projects 1-3, respectively) for the elucidation of active principles. Lead development of active natural products via synthetic and medicinal chemistry will be conducted at OSU (Core B). Novel, active compounds thus discovered will be further evaluated in our panel of in vitro and in vivo bioassays (Projects 1 and 3, Cores A and C), supported by biostatistics (Core D). Group decisions will be made regarding the further development of agents for potential use as anticancer agents. The more advanced states of biological and toxicological testing, as well as the procurement of larger quantities of lead compounds will be sponsored by B-MS (Core C). Management of experimental data will be centralized through the NAPIS database (Core D). The Consortium will work with the involvement of the NCI Program Director in the discovery process, and plans to hold regular meetings of key scientific personnel (inclusive of our External Advisory Panel) to enhance communication and decision-making processes (Core D). Excellent facilities for all technical and administrative aspects of this proposed project are available.

Public Health Relevance

of Research to Public Health: Cancer is responsible for one in every four deaths in the United States, and new treatments are urgently needed. It is the overall goal of the integrated studies of this program project to discover novel chemicals from selected tropical rainforest plants, as well as cyanobacteria and fungi, for development as cancer chemotherapeutic agents, particularly for tumors that can not be cured by present treatment methods.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
3P01CA125066-05S1
Application #
8245239
Study Section
Special Emphasis Panel (ZCA1-GRB-P (M1))
Program Officer
Ogunbiyi, Peter
Project Start
2007-09-14
Project End
2013-08-31
Budget Start
2011-09-01
Budget End
2013-08-31
Support Year
5
Fiscal Year
2011
Total Cost
$140,529
Indirect Cost
Name
Ohio State University
Department
Other Health Professions
Type
Schools of Pharmacy
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Woodard, John L; Huntsman, Andrew C; Patel, Pratiq A et al. (2018) Synthesis and antiproliferative activity of derivatives of the phyllanthusmin class of arylnaphthalene lignan lactones. Bioorg Med Chem 26:2354-2364
Ren, Yulin; Gallucci, Judith C; Li, Xinxin et al. (2018) Crystal Structures and Human Leukemia Cell Apoptosis Inducible Activities of Parthenolide Analogues Isolated from Piptocoma rufescens. J Nat Prod 81:554-561
May, Daniel S; Kang, Hahk-Soo; Santarsiero, Bernard D et al. (2018) Ribocyclophanes A-E, Glycosylated Cyclophanes with Antiproliferative Activity from Two Cultured Terrestrial Cyanobacteria. J Nat Prod 81:572-578
Oblinger, Janet L; Burns, Sarah S; Huang, Jie et al. (2018) Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol 299:299-307
Amrine, Chiraz Soumia M; Raja, Huzefa A; Darveaux, Blaise A et al. (2018) Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol 45:1053-1065
Young, Alexandria N; Herrera, Denisse; Huntsman, Andrew C et al. (2018) Phyllanthusmin Derivatives Induce Apoptosis and Reduce Tumor Burden in High-Grade Serous Ovarian Cancer by Late-Stage Autophagy Inhibition. Mol Cancer Ther 17:2123-2135
Acuña, Ulyana Muñoz; Mo, Shunyan; Zi, Jiachen et al. (2018) Hapalindole H Induces Apoptosis as an Inhibitor of NF-?B and Affects the Intrinsic Mitochondrial Pathway in PC-3 Androgen-insensitive Prostate Cancer Cells. Anticancer Res 38:3299-3307
Al-Huniti, Mohammed H; Rivera-Chávez, José; Colón, Katsuya L et al. (2018) Development and Utilization of a Palladium-Catalyzed Dehydration of Primary Amides To Form Nitriles. Org Lett 20:6046-6050
Crnkovic, Camila M; Krunic, Aleksej; May, Daniel S et al. (2018) Calothrixamides A and B from the Cultured Cyanobacterium Calothrix sp. UIC 10520. J Nat Prod 81:2083-2090
Wilson, Tyler A; Tokarski 2nd, Robert J; Sullivan, Peter et al. (2018) Total Synthesis of Scytonemide A Employing Weinreb AM Solid-Phase Resin. J Nat Prod 81:534-542

Showing the most recent 10 out of 144 publications