Integrins comprise a large family of cell surface receptors with critical roles in cell adhesion, and signal transduction. These properties are exploited in cancer, affecting the spectrum of growth, proliferation. Invasion and metastatic potential of human tumor cells. Because of these broad signaling functions, and easy accessibility at the cell surface, integrins are attractive therapeutic targets in cancer, but their molecular requirements in tumorigenesis are not completely understood. Recent studies have uncovered a novel pathway of integrin signaling critically exploited for prostate cancer progression. We found that integrin avp6 is prominently expressed in prostate cancer, but not in normal prostate, in vivo. In turn. avp6 orchestrates a broad signaling pathway in the prostatic epithelium, triggering androgen receptor (AR) activation, upregulating the expression of survivin, a master switch of cell proliferation and cell survival in cancer, and promoting osteolytic lesions in the bone microenvironment. This pathway results in increased tumor cell invasion, and enhanced metastatic dissemination, in vivo. Therefore, the hypothesis that avp6 orchestrates a novel signaling network of prostate cancer progression can be formulated, and will constitute the focus of the present application. In the first specific aim, experiments will be carried out to elucidate the mechanisfic requirements and functional implications of avp6 upregulafion of survivin in prostate cancer, with respect to transcriptional/post-transcriptlonal responses, modulation of mitochondrial apoptosis, and control of cell cycle checkpoints in response to ionizing irradiation. The second specific aim will investigate whether the signaling circuits mediated by avp6 and other integrins regulate an AR-Runx2 transcriptional complex in bone remodeling during metastatic prostate cancer growth. In the third specific aim, we will target the avp6 pathway with a novel function-blocking monoclonal antibody 6.SG9 in preclinical molecular and genetic models of localized and metastatic prostate cancer, in vivo. The overall application combines mechanistic evaluation of integrin-modulation of tumor progression with state-of the-art studies of developmental therapeutics in advanced prostate cancer. The results will open concrete opportunities for novel molecular molecular therapy of patients with advanced prostate cancer.

Public Health Relevance

We have uncovered a novel pathway of prostate cancer progression centered on the signaling properties of avP6 integrin. Therapeutic targeting of this pathway using molecular and genetic disease models that approximate the human disease, combined with mechanistic dissection of its molecular requirements, may open concrete new prospects for the rational treatment of patients with advanced and metastatic prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA140043-01A1
Application #
7991928
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$207,500
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Patel, Sima; Fu, Shuyu; Mastio, Jerome et al. (2018) Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol 19:1236-1247
Wang, Tao; Huang, Jiayi; Vue, Mai et al. (2018) ?v?3 Integrin Mediates Radioresistance of Prostate Cancer Cells Through Regulation of Survivin. Mol Cancer Res :
Seo, Jae Ho; Agarwal, Ekta; Bryant, Kelly G et al. (2018) Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Res 78:4215-4228
Lu, Huimin; Bowler, Nicholas; Harshyne, Larry A et al. (2018) Exosomal ?v?6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 70:20-35
Reyes-Uribe, Patricia; Adrianzen-Ruesta, Maria Paz; Deng, Zhong et al. (2018) Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 37:4058-4072
Behera, Reeti; Kaur, Amanpreet; Webster, Marie R et al. (2017) Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res 23:3181-3190
DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita et al. (2017) c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem 118:66-73
Ishida, Chiaki Tsuge; Shu, Chang; Halatsch, Marc-Eric et al. (2017) Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget 8:37140-37153
Altieri, Dario C (2017) AML Therapy: Wake Up the Guardian and Cut Loose the Executioners. Cancer Cell 32:719-720
Karpel-Massler, Georg; Ishida, Chiaki Tsuge; Bianchetti, Elena et al. (2017) Inhibition of Mitochondrial Matrix Chaperones and Antiapoptotic Bcl-2 Family Proteins Empower Antitumor Therapeutic Responses. Cancer Res 77:3513-3526

Showing the most recent 10 out of 77 publications