The broad, long-term objectives of this research are the development of novel and high-impact statistical and computational tools for discovering genetic variants associated with inter-individual differences in the efficacy and toxicity of cancer medications and for optimizing drug therapy on the basis of each patient's genetic constitution.
The specific aims i nclude: (1) construction of robust and efficient statistical methods for assessing the effects of SNP genotypes and haplotypes on drug response with a variety of phenotypes (e.g., binary and continuous measures of efficacy and toxicity, right-censored survival time, interval-censored time tp disease progression, and informatively censored PSA levels and adverse events);(2) development of statistical and data-mining techniques for predicting drug response based on high-dimensional, highly correlated genomic data and complex phenotypes;(3) investigation of statistical procedures for providing low-bias estimation of effect sizes with complex and highly multivariate genetic data for follow-up and confirmation studies;(4) exploration of a new form of machine learning for identifying candidate individualized therapies in both pre-clinical studies and clinical trials. All these aims have been motivated by the investigators'applied research experiences and address the most timely and important issues in pharmacogenomics and individualized therapy. The proposed solutions are built on sound statistical and data-mining principles. The theoretical properties of the new methods will be established rigorously via modern empirical process theory and other advanced mathematical arguments. Efficient and stable numerical algorithms will be devised to implement the new methods. Extensive simulation studies will be conducted to evaluate the operating characteristics of the new inferential and numerical procedures in realistic settings. Applications will be provided to a large number of cancer studies, most of which are carried out at Duke University and the University of North Carolina at Chapel Hill. Practical and user-friendly software will be developed and disseminated freely to the general public. Our research will change the ways pharmacogenomic studies and individualized therapy trials are designed and analyzed, which will lead to optimal treatments for patients in cancer and other diseases.

Public Health Relevance

The proposed research will develop new statistical methods that will significantly improve the ways pharmacogenomic studies and individualized therapy trials are designed and analyzed. This will improve public health by hastening the discovery of better treatments for patients in cancer and in other diseases.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA142538-01
Application #
7786682
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (O1))
Project Start
2010-04-01
Project End
2015-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
1
Fiscal Year
2010
Total Cost
$277,513
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Ni, Ai; Cai, Jianwen (2018) Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters. Scand Stat Theory Appl 45:557-570
Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M et al. (2018) Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example. Comput Stat Data Anal 122:135-155
Wang, Chun; Chen, Ming-Hui; Wu, Jing et al. (2018) Online updating method with new variables for big data streams. Can J Stat 46:123-146
Li, Tengfei; Xie, Fengchang; Feng, Xiangnan et al. (2018) Functional Linear Regression Models for Nonignorable Missing Scalar Responses. Stat Sin 28:1867-1886
Pietryk, Edward W; Clement, Kiristin; Elnagheeb, Marwa et al. (2018) Intergenerational response to the endocrine disruptor vinclozolin is influenced by maternal genotype and crossing scheme. Reprod Toxicol 78:9-19
Jung, Sin-Ho (2018) Phase II cancer clinical trials for biomarker-guided treatments. J Biopharm Stat 28:256-263
Psioda, Matthew A; Ibrahim, Joseph G (2018) Bayesian design of a survival trial with a cured fraction using historical data. Stat Med 37:3814-3831
Zhou, Qingning; Cai, Jianwen; Zhou, Haibo (2018) Outcome-dependent sampling with interval-censored failure time data. Biometrics 74:58-67
Psioda, Matthew A; Ibrahim, Joseph G (2018) Bayesian clinical trial design using historical data that inform the treatment effect. Biostatistics :
Shi, Chengchun; Song, Rui; Lu, Wenbin et al. (2018) Maximin Projection Learning for Optimal Treatment Decision with Heterogeneous Individualized Treatment Effects. J R Stat Soc Series B Stat Methodol 80:681-702

Showing the most recent 10 out of 549 publications