Study design is a crucial first step in clinical trials. Well-designed studies are essential for successful cancer research and cancer drug development. Innovative clinical trial designs can potentially require fewer patients, save resources, and accelerate cancer drug development. The broad, long-term objective of this research project is to develop new statistical methodology to address new and challenging issues in the design and analysis of cancer clinical trials. There are 3 specific aims in this praject.
The first aim addresses statistical methods for the design and sample size calculation for longitudinal data and joint models for longitudinal and survival data. Statistical methods will be developed for sample size and power estimation for the overall and direct treatment effect on survival, for the effect of the longitudinal process on survival, and for settings involving multivariate longitudinal and multivariate survival processes.
The second aim studies statistical methodology for the design and analysis of group randomized cancer prevention trials with survival and recurrent event outcomes. Empirical process theory will be used to study the asymptotic behavior of the test statistics and both asymptotic approximation as well as permutation test will be used to develop sample size formulas and power estimation.
The third aim addresses important statistical issues in the oncology drug development pathway. There are three sub-aims. The first sub-aim is in the area of targeted designs. Methods for alternative designs, including """"""""enrichment"""""""" designs, will be developed, and the operating characteristics and costs of these designs to fully targeted designs will be compared. Valid and efficient statistical methods for these trials will be developed by applying a semiparametric empirical likelihood approach. The second sub-aim is in the area of phase 11 designs. New methods for phase II and phase 11/111 clinical trials will be developed and their operating characteristics, costs, and predictive ability for subsequent phase HI trials will be assessed. Information on both combination and non-combination therapies in phase 11 studies and subsequent phase III studies will be gathered to build prediction models using machine learning and other nonparametric classification methods. The third sub-aim is in the area of partially randomized designs. New semiparametric empirical likelihood methods will be developed for the design and analysis of such trials to adjust for selection bias and to improve efficiency. Our research will produce important new and efficient design and analysis tools for cancer research.

Public Health Relevance

This research will provide valuable new design and analysis tools to cancer researchers and other biomedical researchers. These new and improved design and analysis tools will help to improve the quality and efficiency of cancer clinical trials. They will help to improve public health by enabling accurate and efficient estimation of sample size and power calculation for cancer clinical trials and by accelerating cancer drug development.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA142538-03
Application #
8375167
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
3
Fiscal Year
2012
Total Cost
$560,841
Indirect Cost
$312,438
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Kong, Dehan; Maity, Arnab; Hsu, Fang-Chi et al. (2018) Rejoinder to ""A note on testing and estimation in marker-set association study using semiparametric quantile regression kernel machine"". Biometrics 74:767-768
Yu-Feng Liu, Leo; Liu, Yufeng; Zhu, Hongtu et al. (2018) SMAC: Spatial multi-category angle-based classifier for high-dimensional neuroimaging data. Neuroimage 175:230-245
Ni, Ai; Cai, Jianwen (2018) A regularized variable selection procedure in additive hazards model with stratified case-cohort design. Lifetime Data Anal 24:443-463
Fu, Sheng; Zhang, Sanguo; Liu, Yufeng (2018) Adaptively weighted large-margin angle-based classifiers. J Multivar Anal 166:282-299
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn et al. (2018) A New Monte Carlo Method for Estimating Marginal Likelihoods. Bayesian Anal 13:311-333
Liang, Shuhan; Lu, Wenbin; Song, Rui et al. (2018) Sparse concordance-assisted learning for optimal treatment decision. J Mach Learn Res 18:
Diao, Guoqing; Dong, Jun; Zeng, Donglin et al. (2018) Biomarker threshold adaptive designs for survival endpoints. J Biopharm Stat 28:1038-1054
Laber, Eric B; Wu, Fan; Munera, Catherine et al. (2018) Identifying optimal dosage regimes under safety constraints: An application to long term opioid treatment of chronic pain. Stat Med 37:1407-1418
Chen, Stephanie T; Xiao, Luo; Staicu, Ana-Maria (2018) A Smoothing-based Goodness-of-Fit Test of Covariance for Functional Data. Biometrics :
Davenport, Clemontina A; Maity, Arnab; Sullivan, Patrick F et al. (2018) A Powerful Test for SNP Effects on Multivariate Binary Outcomes using Kernel Machine Regression. Stat Biosci 10:117-138

Showing the most recent 10 out of 549 publications