Acute myeloid leukemia (AML) is susceptible to immunotherapy as evidenced by the success of allogeneic (allo) stem cell transplantation (SCT) in this disease. Although allo-SCT can be curative in leukemia, it carries a high rate of treatment-related mortality and morbidity. This is primarily a result of off-target immune responses elicited by donor-derived cytotoxic T cells (CTL) within the SCT graft against normal tissues, a phenomenon known as graft-versus-host disease (GvHD), which occurs in up to 50% of patients following allo-SCT. Furthermore, AML relapse remains the leading cause of mortality following allo-SCT, highlighting the shortfalls of allo-SCT in providing long-lasting cures. In order to minimize GvHD, while taking advantage of the graft versus leukemia (GvL) effect, numerous leukemia-associated antigens (LAAs) have been identified and shown to elicit leukemia-specific immune responses. PR1 is an HLA-A2-restricted LAA that we identified in our lab and targeted using a monoclonal T cell receptor (TCR)-like antibody (8F4), a PR1-peptide vaccine, and PR1- CTL. In the current proposal, we plan to engineer chimeric antigen receptor (CAR) T cells that target PR1/HLA- A2 on the surface of AML using the 8F4 construct. The rationale for this proposal is that in view of the shortcomings and significant toxicities associated with allo-SCT, balanced by the susceptibility of AML to immunotherapy (i.e. allo-SCT), there is a critical need to develop novel immunotherapies to achieve disease elimination with minimal off-target toxicity. We plan to use 8F4 as the CAR since it has a very high affinity for the PR1/HLAA2 epitope presented by AML. We plan to use cord blood T cells as the cell source for engineering the 8F4-CAR T cells due to the success we have recently encountered in engineering and expanding sufficient numbers of effective 8F4-CAR T cells using cord blood products. Furthermore, we showed potency of the cord blood-derived 8F4-CAR-T cells in treating human AML in a mouse xenograft model. We will also introduce a caspase 9 (iCP9) suicide gene into the CAR construct, to increase the safety profile of the 8F4-CAR-T cells. Our central hypothesis is that immunotherapy with iCP9-8F4-CAR T cells engineered from cord blood T cells will eliminate PR1-expressing AML, with minimal off-target toxicity. We will (1) validate the safety and anti-leukemic activity of the iCP9-8F4-CAR-T cells in animal models using primary patient AML samples and cell lines; (2) test the safety and efficacy of the iCP9-8F4-CAR-T cells in patients with AML as a bridge to allo-SCT; and (3) study immune reconstitution and perform correlative studies using blood and bone marrow samples from iCP9-8F4-CAR-T cell recipients. After completion of our proposed studies, we anticipate that PR1-targeting adoptive cellular therapy using 8F4-CAR-T cells could become a standard therapy for patients with myeloid leukemia. In addition, our studies will elucidate the potential for cord blood T cells in the engineering of CAR-T cells for the treatment of cancer.

Public Health Relevance

Chimeric antigen receptor (CAR) T cells have shown promise in the treatment of leukemia. We have identified PR1 as a myeloid leukemia antigen and have engineered immunotherapies that target PR1 including a T cell receptor-like monoclonal antibody (8F4), cytotoxic T lymphocytes (CTL) and a peptide vaccine. We propose (1) to engineer CAR T cells from cord blood T cells using 8F4 as the CAR construct and (2) to treat patients with AML/MDS with 8F4 CAR T cells as a bridge to allogeneic stem cell transplantation.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Agha, Nadia H; Baker, Forrest L; Kunz, Hawley E et al. (2018) Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the ?2-adrenergic receptor. Brain Behav Immun 68:66-75
Yang, Tian-Hui; St John, Lisa S; Garber, Haven R et al. (2018) Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol 201:1389-1399
Barrett, A John; Prockop, Susan; Bollard, Catherine M (2018) Virus-Specific T Cells: Broadening Applicability. Biol Blood Marrow Transplant 24:13-18
Trujillo-Ocampo, Abel; Cho, Hyun-Woo; Herrmann, Amanda C et al. (2018) Rapid ex vivo expansion of highly enriched human invariant natural killer T cells via single antigenic stimulation for cell therapy to prevent graft-versus-host disease. Cytotherapy 20:1089-1101
Dave, Hema; Luo, Min; Blaney, J W et al. (2017) Toward a Rapid Production of Multivirus-Specific T Cells Targeting BKV, Adenovirus, CMV, and EBV from Umbilical Cord Blood. Mol Ther Methods Clin Dev 5:13-21
Alsuliman, Abdullah; Muftuoglu, Muharrem; Khoder, Ahmad et al. (2017) A subset of virus-specific CD161+ T cells selectively express the multidrug transporter MDR1 and are resistant to chemotherapy in AML. Blood 129:740-758
Kumaresan, Pappanaicken R; da Silva, Thiago Aparecido; Kontoyiannis, Dimitrios P (2017) Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells. Front Immunol 8:1939
Kolonin, Mikhail G; Sergeeva, Anna; Staquicini, Daniela I et al. (2017) Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone. Cancer Res 77:3144-3150
Simpson, Richard J; Bigley, Austin B; Agha, Nadia et al. (2017) Mobilizing Immune Cells With Exercise for Cancer Immunotherapy. Exerc Sport Sci Rev 45:163-172
Kerros, Celine; Tripathi, Satyendra C; Zha, Dongxing et al. (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295-10305

Showing the most recent 10 out of 102 publications