Adoptive T cell therapy (ACT) can lead to impressive results but the frequency of success is low. Generally success correlates with persistence of the adoptively transferred T cells. Our results indicate that repetitive TCR stimulation, which occurs during ACT leads to activation induced cell death (AICD) of CDS effector cells. Thus AICD may contribute to poor persistence of adoptively transferred T cells. Recently, it has become possible to genetically modify autologous T cells by transduction with a tumor-specific TCR such as the high affinity TIL13S3i TCR central to this application. While little is known about the biology of these genetically modified cells, we show that they also undergo AICD, Thus a feasible translational approach to enhance persistence of genetically modified T cells will be to insert an additional protective gene into the vector expressing the TlL1383i TCR. Therefore, it will be necessary to understand the signal transduction pathways leading to AICD. Our preliminary data identify JNK, p53, and AIF as mediators of AICD in T cells expressing a native TCR. However, similarities and differences between T cells expressing a native vs. a transduced TCR as well as downstream mediators and remain to be elucidated. We will therefore compare AICD and anti-tumor efficacy between T cells natively expressing the TlL1383i (derived from the h3T transgenic model) and T cells that have been transduced with the TlL31S3i TCR. We observed that ROS generation is a common phenomenon associated with AICD and that pharmacological inhibition with ROS scavenger results in protection from cell death without interfering with T cell activation, which places redox regulation at a central point for therapeutic intervention. It is our hypothesis is that genetically enhancing the antioxidant capacity of TIL1383i TCR transduced T cells will lead to specific and sustained protection from AICD thereby increasing persistence, memory pool development and anti-tumor efficacy following adoptive T cell transfer Our aims are:
Specific Aim 1. To dissect the mechanisrh of AICD in TCR transduced T cells after repetitive TCR stimulation.
Specific Aim 2. To determine how increasing the antioxidant capacity of TCR transduced T cells impacts, survival, function, and memory development in vitro.
Specific Aim 3. To evaluate how increased antioxidant capacity of adoptively transferred TCR transduced T cells affects their persistence and memory development as well as tumor regression in vivo. Our approach could directly impact ongoing clinical trials, in which genetically modified T cells are used for immunotherapy of melanoma.

Public Health Relevance

Immune cells can be taken from blood, activated outside the patient's body, and re-administered to fight cancer. This type of immunotherapy can lead to impressive results if the administered cells stay alive but in most patients the cells disappear. We are proposing to make the immune T cells more robust and anticipate this will prevent them from dying and that therefore a higher number will be available to fight the cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA154778-02
Application #
8555359
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Project Start
2011-09-21
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$284,262
Indirect Cost
$78,347
Name
Loyola University Chicago
Department
Type
DUNS #
791277940
City
Maywood
State
IL
Country
United States
Zip Code
60153
Chiuzan, Cody; Garrett-Mayer, Elizabeth; Nishimura, Michael (2018) An adaptive dose-finding design based on both safety and immunologic responses in cancer clinical trials. Stat Biopharm Res 10:185-195
Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita et al. (2018) CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metab 27:85-100.e8
Jacks, Ramiah D; Keller, Taylor J; Nelson, Alexander et al. (2018) Cell intrinsic characteristics of human cord blood naïve CD4T cells. Immunol Lett 193:51-57
Foley, Kendra C; Nishimura, Michael I; Moore, Tamson V (2018) Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Res 28:171-184
Chatterjee, Shilpak; Chakraborty, Paramita; Daenthanasanmak, Anusara et al. (2018) Targeting PIM Kinase with PD1 inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clin Cancer Res :
Moore, Tamson; Wagner, Courtney Regan; Scurti, Gina M et al. (2018) Clinical and immunologic evaluation of three metastatic melanoma patients treated with autologous melanoma-reactive TCR-transduced T cells. Cancer Immunol Immunother 67:311-325
Johnson, C Bryce; May, Bennett R; Riesenberg, Brian P et al. (2018) Enhanced Lymphodepletion Is Insufficient to Replace Exogenous IL2 or IL15 Therapy in Augmenting the Efficacy of Adoptively Transferred Effector CD8+ T Cells. Cancer Res 78:3067-3074
Spear, Timothy T; Wang, Yuan; Smith Jr, Thomas W et al. (2018) Altered Peptide Ligands Impact the Diversity of Polyfunctional Phenotypes in T Cell Receptor Gene-Modified T Cells. Mol Ther 26:996-1007
Wrangle, John M; Velcheti, Vamsidhar; Patel, Manish R et al. (2018) ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 19:694-704
Spear, Timothy T; Foley, Kendra C; Garrett-Mayer, Elizabeth et al. (2018) TCR modifications that enhance chain pairing in gene-modified T cells can augment cross-reactivity and alleviate CD8 dependence. J Leukoc Biol 103:973-983

Showing the most recent 10 out of 50 publications