DNA alkylating agents, including nitrogen mustards (NM) such as cyclophosphamide (CPA), remain in heavy use as anti-cancer agents. They are employed in adjuvant chemotherapy regimens, such as the AC (anthracycline-CPA) therapy frequently administered to breast cancer patients. The primary site of alkylation in DNA is the N7-guanine position. This Program focuses upon chemistry and biology that happens after N7-dG alkylation: the NM N7-alkylated guanines undergo interstrand cross-link formation (ICL), base-induced ring-opening, yielding stable alkyl-formamidopyrimidine (N5-substituted-Fapy) lesions, and depurination, yielding apurinic (AP) sites. These types of complex DNA damage are may contribute substantially to the mechanisms of action of NM agents, including cytoxicity. Knowledge of the spectrum of complex DNA damage created by NM agents during therapy and the biological processing of this damage is critical for the design of effective treatment regimens. We have shown that the anthracyline antibiotic doxorubicin (Adriamycin), a component of AC therapy, forms covalent conjugates with AP sites, a previously unrecognized activity for this drug. Thus, AP sites formed as a consequence of NM treatment or as base excision repair (BER) intermediates provide targets for adjuvant therapies designed to increase cytotoxicity. Complex DNA damage arising from rearrangement of N7-dG alkylation sites has until now been understudied, in part, due to an inability to rigorously prepare DNAs containing such damage for biological, biochemical, and structural studies. Insights gained from our Program will yield fundamental and applied understanding of complex DNA damage arising from DNA alkylation and its detection in cellular DNA, innovative syntheses for the production and characterization of DNAs containing site-specific complex damage, structural understanding of how complex damage and AP site conjugation products alters DNA structure, and modulates repair and replication, effective design of anthracycline analogs targeted to AP sites, new biomarkers and analytical methods with which to monitor real time therapeutic efficacy in patients undergoing chemotherapy, and improved adjuvant therapy regimens designed to maximize cytotoxic response in cancer vs normal cells.

Public Health Relevance

The alkylation of DNA by clinically used chemotherapeutic agents such as nitrogen mustards (NM) and thioTEPA results in complex forms of DNA damage. These may be genotoxic or cytotoxic, and in addition, may react further with other chemotherapeutic agents, such as the anthracyline antibiotics. Delineating the chemistry and biology of these complex damage sites, individually or in combination with other agents, and how they are processed in humans can serve as the basis for novel strategies to improve therapeutic treatments of cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA160032-28
Application #
9982794
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Okano, Paul
Project Start
1997-08-01
Project End
2023-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
28
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Biochemistry
Type
Schools of Medicine
DUNS #
965717143
City
Nashville
State
TN
Country
United States
Zip Code
37203
Sha, Yan; Minko, Irina G; Malik, Chanchal K et al. (2017) Error-prone replication bypass of the imidazole ring-opened formamidopyrimidine deoxyguanosine adduct. Environ Mol Mutagen 58:182-189
Minko, Irina G; Rizzo, Carmelo J; Lloyd, R Stephen (2017) Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical ?-anomer. J Biol Chem 292:18790-18799
Su, Yan; Egli, Martin; Guengerich, F Peter (2017) Human DNA polymerase ? accommodates RNA for strand extension. J Biol Chem 292:18044-18051
Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom et al. (2016) Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase??. Chembiochem 17:2033-2037
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina et al. (2016) Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ?. J Biol Chem 291:21063-21073
Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R et al. (2016) Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites. Sci Rep 6:28894
Patra, Amritraj; Su, Yan; Zhang, Qianqian et al. (2016) Structural and Kinetic Analysis of Miscoding Opposite the DNA Adduct 1,N6-Ethenodeoxyadenosine by Human Translesion DNA Polymerase ?. J Biol Chem 291:14134-45
Su, Yan; Egli, Martin; Guengerich, F Peter (2016) Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase ?. J Biol Chem 291:3747-56
Xu, Wenyan; Kool, Daniel; O'Flaherty, Derek K et al. (2016) O6-2'-Deoxyguanosine-butylene-O6-2'-deoxyguanosine DNA Interstrand Cross-Links Are Replication-Blocking and Mutagenic DNA Lesions. Chem Res Toxicol 29:1872-1882
Patra, Amitraj; Zhang, Qianqian; Guengerich, F Peter et al. (2016) Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase ?. J Biol Chem 291:24304-24313

Showing the most recent 10 out of 57 publications