The past several years have seen a paradigm shift in prostate cancer (PCa) therapy; and it is now becoming widely accepted that androgen receptor (AR) remains active and is a therapeutic target in prostate cancers that relapse after surgical or medical castration (castration resistant prostate cancer, CRPC).'This Program Project brings together a group of investigators with extensive and complimentary expertise in androgens and AR in PCa, and with a track record of accomplishments and productive collaborations. Each project focuses on distinct mechanisms that contribute to AR activity and function in CRPC. Project 1, Steroid Metabolism in Castration-Resistant Prostate Cancer (PI Peter Nelson), focuses on targeting intratumoral androgen synthesis and mechanisms of resistance to abiraterone and other inhibitors of androgen synthesis. Project 2, Basis for Androgen Receptor Antagonist Resistance in CRPC (PI Steven Balk), focuses on mechanisms of action and resistance to AR antagonists. Project 3, Development of Castration Resistance by Alternative AR Splicing (PJ Stephen Plymate) focuses on the role of alternative AR splicing in CRPC. Project 4, Epigenetic Reprogramming of AR Function In CRPC (PI Myles Brown) focuses on the AR transcriptional program and how it is altered with PCa progression. Core A, Administrative/Clinical/Biostatistics Core (PI Steven Balk, Co-PI Peter Nelson) will coordinate the overall program, provide biostatistical support, facilitate access to patient materials, and consult on approaches to enhance/accelerate translation to the clinic. Core B, Biospecimen and Animal Models Core (PI Robert Vessella), will provide a unique series of PCa xenograft models in conjunction with the expertise and infrastructure to carry out trials of single and combination therapies in these models. Dr. Vessella also directs a very robust biospecimen collection and processing Core, and will provide further access to appropriate clinical materials. Core C, Steroid Analytical Core (PI Trevor Penning), will develop and deploy needed state-of-the-art methods to measure multiple steroid and metabolites in human and mouse samples.

Public Health Relevance

Our primary objective is to elucidate clinically relevant mechanisms that contribute to AR activity/function in CRPC and mediate resistance to promising new agents including abiraterone and MDV3100. Our subsequent objective is to identify therapeutic approaches that can overcome these resistance mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
4P01CA163227-04
Application #
9099781
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Sathyamoorthy, Neeraja
Project Start
2013-05-24
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
Mostaghel, Elahe A (2018) Alternative Acts: Oncogenic Splicing of Steroidogenic Enzymes in Prostate Cancer. Clin Cancer Res :
Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C (2018) The potential of AR-V7 as a therapeutic target. Expert Opin Ther Targets 22:201-216
Arai, Seiji; Jonas, Oliver; Whitman, Matthew A et al. (2018) Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis. Clin Cancer Res 24:5458-5470
Viswanathan, Srinivas R; Ha, Gavin; Hoff, Andreas M et al. (2018) Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell 174:433-447.e19
Russo, Joshua W; Gao, Ce; Bhasin, Swati S et al. (2018) Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Res 78:6354-6362
Sowalsky, Adam G; Ye, Huihui; Bhasin, Manoj et al. (2018) Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Res 78:4716-4730
Zhu, Yezi; Sharp, Adam; Anderson, Courtney M et al. (2018) Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. Eur Urol 73:727-735
Penning, Trevor M (2018) Dehydroepiandrosterone (DHEA)-SO4 Depot and Castration-Resistant Prostate Cancer. Vitam Horm 108:309-331
Barnard, Monique; Quanson, Jonathan L; Mostaghel, Elahe et al. (2018) 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. J Steroid Biochem Mol Biol 183:192-201
Ganaie, Arsheed A; Beigh, Firdous H; Astone, Matteo et al. (2018) BMI1 Drives Metastasis of Prostate Cancer in Caucasian and African-American Men and Is A Potential Therapeutic Target: Hypothesis Tested in Race-specific Models. Clin Cancer Res 24:6421-6432

Showing the most recent 10 out of 90 publications