Bladder cancer (BC) is a heterogeneous disease entity exhibiting divergent phenotype, biological behavior and clinical outcome. About 70% of BC present as low-grade, superficial papillary tumors that are frequently recurrent but infrequently progress to high-grade muscle-invasive stages. The rest (~30%) of BC are high-grade and invasive at presentation, and they usually do have a prior history of low-grade, papillary tumors but are believed to arise de novo or derive from flat, high-grade carcinoma in situ lesions. Whether these two major phenotypic variants of BC are caused by distinct molecular alterations is of central importance in understanding and effectively managing BC. However, answer to this question remains elusive due to the lack of concerted research efforts. Over the past 15 years, we have been dissecting the molecular mechanisms of BC pathways by developing and analyzing genetically engineered mice via urothelium-specific gene activation or ablation or both. The resulting mouse models not only recapitulate many salient features of human BC, but yield new information regarding the cause-effect relationship between genes and pathways. The present proposal is designed to gain much deeper and broader insights into the combinatorial molecular events that together serve as the """"""""drivers"""""""" to trigger BC formation along the two major phenotypic pathways.
Aim 1 will define the molecular alterations that are capable of synergizing with mutated fibroblast growth factor receptor 3 (FGFR3) to initiate low-grade, superficial papillary BC.
This Aim will focus on (i) the deficiency of pi 51 NK4b, p16lNK4a and p19ARF, three tumor suppressors located on 9p21 and frequently deleted in early-stage human BC;and (ii) the increased signaling of mutated FGFR3 through FGF signaling.
Aim 2 will examine the effects of gain-of-function p53 mutations and those in collaboration with pRb family deficiency in triggering high-grade invasive BC. A combination of cell culture, genetically engineered models and human studies will be used to accomplish the objectives. Collectively, these studies should help define the """"""""molecular drivers"""""""" that are responsible for urothelial tumorigenesis along divergent pathways and help devise new biomarker panels for improved diagnosis, prognosis prediction and novel therapies of BC.

Public Health Relevance

Normal bladder epithelial cells can be converted into two major forms of tumors, one that often recurs thus requiring multiple therapies but infrequently invades, and another that does not recur but is often lethal. Elucidating the molecular mechanisms underlying each type of bladder tumors will open doors to tumor-type- specific approaches for diagnosis, prevention and therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA165980-02
Application #
8765239
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10016
Jin, Honglei; Sun, Wenrui; Zhang, Yuanmei et al. (2018) MicroRNA-411 Downregulation Enhances Tumor Growth by Upregulating MLLT11 Expression in Human Bladder Cancer. Mol Ther Nucleic Acids 11:312-322
Hua, Xiaohui; Xu, Jiheng; Deng, Xu et al. (2018) New compound ChlA-F induces autophagy-dependent anti-cancer effect via upregulating Sestrin-2 in human bladder cancer. Cancer Lett 436:38-51
Peng, Minggang; Wang, Jingjing; Zhang, Dongyun et al. (2018) PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene :
Li, Xin; Tian, Zhongxian; Jin, Honglei et al. (2018) Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63? Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity. Mol Cell Biol 38:
Guo, Xirui; Huang, Haishan; Jin, Honglei et al. (2018) ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3?-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. Mol Ther Nucleic Acids 12:337-349
Weng, Mao-Wen; Lee, Hyun-Wook; Park, Sung-Hyun et al. (2018) Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A 115:E6152-E6161
Yu, Yonghui; Jin, Honglei; Xu, Jiheng et al. (2018) XIAP overexpression promotes bladder cancer invasion in vitro and lung metastasis in vivo via enhancing nucleolin-mediated Rho-GDI? mRNA stability. Int J Cancer 142:2040-2055
Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-Wen et al. (2018) E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A 115:E1560-E1569
Wang, Hsiang-Tsui; Lin, Jing-Heng; Yang, Chun-Hsiang et al. (2017) Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells. Oncotarget 8:70406-70421
Wang, Xing; Zhang, Fenglin; Wu, Xue-Ru (2017) Inhibition of Pyruvate Kinase M2 Markedly Reduces Chemoresistance of Advanced Bladder Cancer to Cisplatin. Sci Rep 7:45983

Showing the most recent 10 out of 65 publications