There is now convincing evidence that an endogenous cannabinoid system exists in both the brain and periphery. The isolation and identification of endogenous cannabinoids, such as anandamide, 2-arachidonyl glycerol and noladin ether, have intensified efforts to understand the functional significance of endogenous cannabinoids. It was the discovery of the endocannabinoids that led to the formation of the current program project. Our major goal continues to be the establishment of the role of the endocannabinoid system in normal physiological processes as well as in disease states. This understanding is particularly relevant to the etiology of cannabis abuse as well as identification of therapeutic uses of cannabinoids. Cannabinoid research has produced tremendous advances in recent years; however, as is often the case, increased knowledge reveals the complexity of a biological system. We are now assured that endocannabinoids produce some of their effects through known cannabinoid receptors, yet they are also capable of acting at as-yet-unidentified sites. It is unclear whether endocannabinoids and the plant-derived tetrahydrocannabinoid (THC) activate endocannabinoids in an identical fashion. The synthesis, cellular uptake and metabolic degradation are all crucial for the actions of the endocannabinoids, but these processes are not yet fully understood. There are numerous suggestions that endocannabinoids are involved in neurodegenerative/neurological disorders, yet the mechanism responsible for these putative actions remain to be elucidated. The purpose of this proposal is to address the above questions using this multidisciplinary program that consists of five research projects and an administrative core. Each P.I. is an experienced researcher who will make a unique contribution. Professor Mechoulam proposes to isolate and identify other endogenous substances, conduct a synthetic program, and assess cannabinoids as neuroprotective and anti-inflammatory agents. Dr. Razdan will continue to provide novel and innovative probes to the other members of the program project. Research teams led by Drs. Martin and Pertwee will coordinate their pharmacological evaluations of endogenous ligands and their analogs in order to further the structure-activity relationships of agonists and antagonist at the CB1 receptor, establish the structure-activity relationships for non-CB1 cannabinoid receptors, investigate cannabinoid actions at vanilloid VR1 receptors and develop selective inhibitors for fatty acid amidohydrolase and the anandamide membrane transporter. Dr. Dewey will determine which signal transduction pathways are critical for endocannabinoid and exocannabinoid actions. This highly integrated research team will continue to work closely together toward the goal of defining the biological roles of endocannabinoids.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
2P01DA009789-07A1
Application #
6460605
Study Section
Special Emphasis Panel (ZDA1-KXA-N (05))
Program Officer
Rapaka, Rao
Project Start
1995-09-15
Project End
2007-06-30
Budget Start
2002-09-30
Budget End
2003-06-30
Support Year
7
Fiscal Year
2002
Total Cost
$952,837
Indirect Cost
Name
Virginia Commonwealth University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
City
Richmond
State
VA
Country
United States
Zip Code
23298
Donvito, Giulia; Nass, Sara R; Wilkerson, Jenny L et al. (2018) The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 43:52-79
Wilkerson, Jenny L; Curry, Zachary A; Kinlow, Pamela D et al. (2018) Evaluation of different drug classes on transient sciatic nerve injury-depressed marble burying in mice. Pain 159:1155-1165
Mitjavila, Jose; Yin, Danielle; Kulkarni, Pushkar M et al. (2018) Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons. Pharmacol Res 129:475-481
Wilkerson, Jenny L; Ghosh, Sudeshna; Mustafa, Mohammed et al. (2017) The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 114:156-167
Wilkerson, Jenny L; Niphakis, Micah J; Grim, Travis W et al. (2016) The Selective Monoacylglycerol Lipase Inhibitor MJN110 Produces Opioid-Sparing Effects in a Mouse Neuropathic Pain Model. J Pharmacol Exp Ther 357:145-56
Buczynski, Matthew W; Herman, Melissa A; Hsu, Ku-Lung et al. (2016) Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure. Proc Natl Acad Sci U S A 113:1086-91
Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco et al. (2016) Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J Leukoc Biol 99:531-40
Tessaris, Daniele; Matarazzo, Patrizia; Lala, Roberto et al. (2016) Odontoiatric perspectives and osteonecrosis of the jaw as a possible adverse effect of bisphosphonates therapy in fibrous dysplasia and McCune-Albright syndrome. J Pediatr Endocrinol Metab 29:333-6
Kocova, Mirjana; Zdraveska, Nikolina; Kacarska, Rozana et al. (2016) Diagnostic approach in children with unusual symptoms of acquired hypothyroidism. When to look for pituitary hyperplasia? J Pediatr Endocrinol Metab 29:297-303
Anavi-Goffer, Sharon; Ross, Ruth A (2016) A Functional Assay for GPR55: Envision Protocol. Methods Mol Biol 1412:77-83

Showing the most recent 10 out of 270 publications