The goal of this project is to address several unresolved questions regarding the role of the endocannabinoid system in pain, reward and drug dependence. There is strong evidence that the two major endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG) exert considerable influence in these pathological states, yet it is highly unlikely that they are simply playing redundant roles. Therefore, one of the objectives of this project is to delineate their roles in these pathological conditions. The fact that the synthetic and metabolic pathways for endocannabinoids are not completely understood creates a challenge in systematically manipulating their levels under in vivo conditions. Therefore, a major goal is to develop potent and selective enzyme inhibitors that can be used to manipulate endocannabinoids in vivo. Synthetic and metabolic enzyme inhibitors for AEA and 2-AG will be prepared by Dr. Razdan (Project 2). Those identified by Dr. Cravatt (Project 3) as enzyme selective will be evaluated by us in behavioral battery of tests for cannabinoid activity. The second approach is to establish the phenotypes of mice deficient in endocannabinoid synthetic and metabolic enzymes generated by Dr. Cravatt. At the same time, we are well aware that several classes of lipids structurally related to AEA and 2-AG impact the endocannabinoid system by influencing synthetic and metabolic pathways, acting directly on cannabinoid receptors, or acting at the newly discovered allosteric site on the CBi receptor site. To address these questions, we will conduct in vitro and in vivo evaluation of synthetic allosteric ligands for CBi receptors [prepared by Drs. Razdan and Mechoulam (Project 4)], and putative endocannabinoids provided by Dr. Mechoulam. To complement Dr. Mechoulam's efforts to identify new endocannabinoids, we will establish lipid profiles in selected brain regions of mice under different experimental conditions in an effort to identify lipids that may be endocannabinoids or relevant lipid mediators. We will use existing as well as these new discoveries to further explore the involvement of the endocannabinoid system in pain, reward and dependence. Emphasis will be placed on inflammatory and neuropathic pain models. We will determine the extent to which cytokines and chemokines are involved in endocannabinoid anti-inflammatory effects. The receptor mechanisms of action and underlying neural substrates will be investigated using genetic and pharmacological approaches. The same comprehensive approach will be employed in drug discrimination and feeding behavior, to establish THC-like profiles of agents that manipulate the endocannabinoid system and to establish phenotypic behavior of genetically modified mice. Collectively, these studies will identify endogenous substances that may act either directly or indirectly on the endogenous cannabinoid system, and elucidate the role that AEA and 2-AG play in pain, reward, and drug dependence.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1-RXL-E (19))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Virginia Commonwealth University
United States
Zip Code
Donvito, Giulia; Nass, Sara R; Wilkerson, Jenny L et al. (2018) The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 43:52-79
Wilkerson, Jenny L; Curry, Zachary A; Kinlow, Pamela D et al. (2018) Evaluation of different drug classes on transient sciatic nerve injury-depressed marble burying in mice. Pain 159:1155-1165
Mitjavila, Jose; Yin, Danielle; Kulkarni, Pushkar M et al. (2018) Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons. Pharmacol Res 129:475-481
Wilkerson, Jenny L; Ghosh, Sudeshna; Mustafa, Mohammed et al. (2017) The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 114:156-167
Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco et al. (2016) Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J Leukoc Biol 99:531-40
Tessaris, Daniele; Matarazzo, Patrizia; Lala, Roberto et al. (2016) Odontoiatric perspectives and osteonecrosis of the jaw as a possible adverse effect of bisphosphonates therapy in fibrous dysplasia and McCune-Albright syndrome. J Pediatr Endocrinol Metab 29:333-6
Kocova, Mirjana; Zdraveska, Nikolina; Kacarska, Rozana et al. (2016) Diagnostic approach in children with unusual symptoms of acquired hypothyroidism. When to look for pituitary hyperplasia? J Pediatr Endocrinol Metab 29:297-303
Anavi-Goffer, Sharon; Ross, Ruth A (2016) A Functional Assay for GPR55: Envision Protocol. Methods Mol Biol 1412:77-83
Wilkerson, J L; Ghosh, S; Bagdas, D et al. (2016) Diacylglycerol lipase ? inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br J Pharmacol 173:1678-92
Sticht, Martin A; Limebeer, Cheryl L; Rafla, Benjamin R et al. (2016) Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex. Neuropharmacology 102:92-102

Showing the most recent 10 out of 270 publications