Investigations into the molecular targets of drugs of abuse and their associated intracellular signaling pathways by this Program Project Grant have yielded a wealth of information regarding the cellular perturbations associated with these drugs. The combined studies outlined in Project 1-3 will extend upon this existing knowledge with rigorous cell biological, molecular, biochemical, behavioral and electrophysiological studies of striatal neurons following drug treatment. The Scientific Core will be devoted to facilitating the experiments proposed in Projects 1-3. The centralized responsibility for the performance of routine tasks, such as the maintenance of mouse colonies and the supply of common reagents, provides for an efficient, flexible and cost-effective means to ensure an adequate supply of required materials for all Projects.The major aims of the Scientific Core will be:
Aim I. The characterization and maintenance of transgenic mouse colonies;
Aim II. The production of key reagents, including polyclonal antibodies, phosphorylation state-specific antibodies, the design and execution of yeast two-hybrid screens, and the production of AAV viruses;
Aim III. The analysis of dendritic spines. All Scientific Core Aims will be conducted in close, ongoing consultation with the staff from Projects 1-3, such that services are delivered as required. The mice produced by the Scientific Core will be essential for many of the studies proposed in Projects 1-3, due to a heavy reliance on genetically modified animals. Production by a centralized Core will ensure optimal animal production and use. The biochemical and immunological reagents generated by the Scientific Core will also be necessary for Projects. The analysis of dendritic spines will be essential for Project 1, and will also help Projects 2 and 3 to carry out their proposed studies of dendritic spine morphology.

Public Health Relevance

The proposed studies in this Program Project Grant will have the potential to provide greater insights into the causes of drug dependence as well as to help identify possible novel targets for pharmacological intervention. The Scientific Core will support this effort through facilitation of the three Projects in the Program Project Grant.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA010044-19
Application #
8624679
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
19
Fiscal Year
2014
Total Cost
$504,990
Indirect Cost
$206,179
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Li, Daniel; Musante, Veronica; Zhou, Wenliang et al. (2018) Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. J Biol Chem 293:11179-11194
Seo, J-S; Zhong, P; Liu, A et al. (2018) Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry 23:1113-1119
Madero-Pérez, Jesús; Fdez, Elena; Fernández, Belén et al. (2018) Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Mol Neurodegener 13:3
Chang, Audrey N; Gao, Ning; Liu, Zhenan et al. (2018) The dominant protein phosphatase PP1c isoform in smooth muscle cells, PP1c?, is essential for smooth muscle contraction. J Biol Chem 293:16677-16686
Andrade, Erika C; Musante, Veronica; Horiuchi, Atsuko et al. (2017) ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase). J Neurosci 37:2709-2722
Musante, Veronica; Li, Lu; Kanyo, Jean et al. (2017) Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. Elife 6:
Milosevic, Ana; Liebmann, Thomas; Knudsen, Margarete et al. (2017) Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain. J Comp Neurol 525:955-975
Ceglia, Ilaria; Lee, Ko-Woon; Cahill, Michael E et al. (2017) WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proc Natl Acad Sci U S A 114:1395-1400
Seo, J-S; Wei, J; Qin, L et al. (2017) Cellular and molecular basis for stress-induced depression. Mol Psychiatry 22:1440-1447
Nishi, Akinori; Matamales, Miriam; Musante, Veronica et al. (2017) Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. J Biol Chem 292:1462-1476

Showing the most recent 10 out of 205 publications