The technical services core at Kresge Hearing Research Institute consists of three service units: the electronics shop; the machine shop; and computing services. Each of these units provides essential services to the research programs of the Institute that make it possible to accomplish research goals more efficiently and inexpensively than would be possible under other arrangements. Each of the units has made it possible to develop specialized instrumentation and applications that are not commercially available, and to maintain existing lab equipment and facilities. The staff of these units have a long history of working together to assist the investigators of the Institute in accomplishing their research goals. Because of their familiarity with auditory research, the staff members are able to proceed from the conceptual description of what is required, through the fabrication and implementation stages of product creation without the need for detailed engineering specifications such as might be required to obtain custom designed products from outside suppliers. The on-site facilities have proven to be extremely valuable in allowing interactions between core staff and investigators to make modifications to devices and applications to optimize them for the research application.

Project Start
1999-12-01
Project End
2000-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
34
Fiscal Year
2000
Total Cost
$157,641
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Stefanescu, Roxana A; Koehler, Seth D; Shore, Susan E (2015) Stimulus-timing-dependent modifications of rate-level functions in animals with and without tinnitus. J Neurophysiol 113:956-70
Basura, Gregory J; Koehler, Seth D; Shore, Susan E (2015) Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus. J Neurophysiol 114:3064-75
Le Prell, Colleen G; Hughes, Larry F; Bledsoe Jr, Sanford C (2014) Dynorphin release by the lateral olivocochlear efferents may inhibit auditory nerve activity: a cochlear drug delivery study. Neurosci Lett 571:17-22
Le Prell, Colleen G; Dolan, David F; Hughes, Larry F et al. (2014) Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neurosci Lett 582:54-8
Koehler, Seth D; Shore, Susan E (2013) Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus. PLoS One 8:e59828
Basura, Gregory J; Koehler, Seth D; Shore, Susan E (2012) Multi-sensory integration in brainstem and auditory cortex. Brain Res 1485:95-107
Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth et al. (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus--possible basis for tinnitus-related hyperactivity? J Neurosci 32:1660-71
Koehler, Seth D; Pradhan, Shashwati; Manis, Paul B et al. (2011) Somatosensory inputs modify auditory spike timing in dorsal cochlear nucleus principal cells. Eur J Neurosci 33:409-20
Bledsoe Jr, Sanford C; Koehler, Seth; Tucci, Debara L et al. (2009) Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. J Neurophysiol 102:886-900
Skjonsberg, Asa; Halsey, Karin; Ulfendahl, Mats et al. (2007) Exploring efferent-mediated DPOAE adaptation in three different guinea pig strains. Hear Res 224:27-33

Showing the most recent 10 out of 54 publications