In this program, clinicians and basic scientists study structure and function in the auditory pathway in animals and humans. The projects target clinical and basic-science issues from the middle and inner ear, through brainstem to cortex, in normal and hearing impaired individuals. Engineering, physiological and clinical approaches are combined in Project 1 to study conductive hearing loss in humans. Using measurements in human temporal bones to test models of sound transmission, the efficacies of surgical techniques are predicted and predictions tested against clinical outcomes. Biological and engineering approaches are combined in Project 2 to investigate the role of cochlear supporting cells in maintaining ion balance in normal and high-level sound environments. If our hypotheses are correct, malfunction in this supporting-cell network may lead to cochlear fluid disorders, and understanding their normal function may suggest effective treatments. Another team combines pharmacology, physiology and molecular biology, in Project 3, to prove the molecular mechanisms underlying efferent protection of the inner ear from acoustic injury. Our hypotheses suggest a number of drugs which should enhance protection and also suggest a novel cell-signaling system of general importance to cell biology. The cochlear efferent pathway may also improve auditory performance in noisy environments. The functional role of this feedback pathway is investigated in Project 4, by assaying efferent-reflex strength in human subjects as the auditory task changes to resolve whether up-or down-regulation of this reflex occurs. In Project 5, neurophysiology, psychophysics and neuroanatomy combine to investigate the neural substrate for perceptual phenomena in spatial hearing, such as the improved detectability of masked signals as signal and noise sources are spatially separated. Insight into the underlying physiological mechanisms is important in understanding performance deficits in the hearing impaired, especially in noisy environments. Project 6 studies auditory processing in human subjects via functional magnetic resonance imaging (fMRI) of neuronal activity. Advances in fMRI enable resolution of localized activation throughout the auditory pathway from cochlear nucleus to cortex, allowing this team of basic scientists and clinicians to directly test fundamental and longstanding assumptions concerning the applicability of neurophysiological studies of animal models to human audition, in normal and hearing impaired individuals.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Program Projects (P01)
Project #
5P01DC000119-25
Application #
6175617
Study Section
Special Emphasis Panel (ZDC1-SRB-N (24))
Program Officer
Freeman, Nancy
Project Start
1976-06-01
Project End
2002-05-31
Budget Start
2000-06-01
Budget End
2001-05-31
Support Year
25
Fiscal Year
2000
Total Cost
$1,190,324
Indirect Cost
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Fullerton, Barbara C; Pandya, Deepak N (2007) Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. J Comp Neurol 504:470-98
Gutschalk, Alexander; Oxenham, Andrew J; Micheyl, Christophe et al. (2007) Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J Neurosci 27:13074-81
Micheyl, Christophe; Carlyon, Robert P; Gutschalk, Alexander et al. (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116-31
Wilson, E Courtenay; Melcher, Jennifer R; Micheyl, Christophe et al. (2007) Cortical FMRI activation to sequences of tones alternating in frequency: relationship to perceived rate and streaming. J Neurophysiol 97:2230-8
Sigalovsky, Irina S; Melcher, Jennifer R (2006) Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 215:67-76
Sigalovsky, Irina S; Fischl, Bruce; Melcher, Jennifer R (2006) Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 32:1524-37
Hawley, Monica L; Melcher, Jennifer R; Fullerton, Barbara C (2005) Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei. Hear Res 204:101-10
Harms, Michael P; Guinan Jr, John J; Sigalovsky, Irina S et al. (2005) Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI. J Neurophysiol 93:210-22
Talavage, Thomas M; Edmister, Whitney B (2004) Nonlinearity of FMRI responses in human auditory cortex. Hum Brain Mapp 22:216-28
Penagos, Hector; Melcher, Jennifer R; Oxenham, Andrew J (2004) A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 24:6810-5

Showing the most recent 10 out of 61 publications