The prevalence of dental caries has been reduced significantly in some segments of the population over the past 25 years. The observed reduction has been attributed largely to increased exposure to fluoride in drinking water and use of fluoridated dentrifrices. During the same time period the use of food preservatives e.g. benzoates, sorbates, propionates, salicylates has also increased dramatically. For example the consumption of benzoate in the U.S. has increased from 1.8 million tons in 1970 to 25.5 million in 1995. Thus humans are exposed to preservatives constantly; persons in the U.S. consuming the average amount of soda ingest 800 mg of benzoate daily. Food preservatives are weak acids and exert their anti-microbial effect in a manner similar to that of fluoride i.e. at low pH values they diffuse undissociated through the bacterial cell membrane and acidify the cytoplasm, rendering microorganisms sensitive to acid. Acid tolerance is a characteristic of cariogenic organisms. Weak acids may also affect bacterial membranes. We have preliminary data which show that benzoates reduces the production of glycosyltransferase by microorganisms without affecting the enzymatic activity. This observation is consistent with an earlier report (Bowen and Hewitt, 1971) which showed that fluoride in growth medium influences the production of glucosyltransferase by mutans streptococci. Data from preliminary studies conducted in rats show that benzoate and non-steroidal anti- inflammatory agents e.g. ketoprofen (weak-acid) enhances the cariostatic effect of fluoride and also many suppress mutans populations. The purpose of the present study is to explore the effects of well-recognized food preservatives alone or in combination with fluoride on caries in our animal model. The outcome of this research could result in identifying a novel method of enhancing the effectiveness of fluoride.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Program Projects (P01)
Project #
2P01DE011549-06
Application #
6287848
Study Section
Special Emphasis Panel (ZDE1-PW (50))
Project Start
1995-09-01
Project End
2004-12-31
Budget Start
Budget End
Support Year
6
Fiscal Year
2001
Total Cost
$137,306
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
Bowen, W H; Koo, H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69-86
Chatfield, Christa H; Koo, Hyun; Quivey Jr, Robert G (2005) The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. Microbiology 151:625-31
Culp, D J; Quivey, R Q; Bowen, W H et al. (2005) A mouse caries model and evaluation of aqp5-/- knockout mice. Caries Res 39:448-54
Bowen, William H; Lawrence, Ruth A (2005) Comparison of the cariogenicity of cola, honey, cow milk, human milk, and sucrose. Pediatrics 116:921-6
Barboza-Silva, E; Castro, A C D; Marquis, R E (2005) Mechanisms of inhibition by fluoride of urease activities of cell suspensions and biofilms of Staphylococcus epidermidis, Streptococcus salivarius, Actinomyces naeslundii and of dental plaque. Oral Microbiol Immunol 20:323-32
Zhu, Qingyuan; Quivey, Robert G; Berger, Andrew J (2004) Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. J Biomed Opt 9:1182-6
Fozo, Elizabeth M; Quivey Jr, Robert G (2004) The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152-8
Fozo, Elizabeth M; Quivey Jr, Robert G (2004) Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929-36
Phan, T-N; Buckner, T; Sheng, J et al. (2004) Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol Immunol 19:31-8
Fozo, Elizabeth M; Kajfasz, Jessica K; Quivey Jr, Robert G (2004) Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 238:291-5

Showing the most recent 10 out of 39 publications