of the Core) This core, which was a part of the Molecular Pathobiology Core during the last funding period, has been reorganized to serve as a repository of tissues and provide expertise and facilities in areas of histology, immunohistochemistry, in situ hybridization and electron microspcopy. It is stated that because of increase in volume of work and sophistication of technologies, the members (Drs. Evers, Greeley Jr., Townsend and Cooper) of this Program Project has decided to create this Histopathology Core. Service provide by this core will be utilized by all members of this Program Project. In general, this core laboratory will provide the analytic facility as well as the necessary instruments to perform and assist in the following studies: (1) assessment of structural integrity of organs and tissues for functional properties, (2) assessment of structural alterations induced by modulating agents, (3) comparative assessment of xenografts and tumors, (4) assessment of differentiaton, de-novo and induced, and of cultured cells, (5) assessment of purity/homogeneity of isolated cell fractions as well as of organs, (6) characterization of polyclonal and monoclonal antibodies, (7) immunolocalization studies, (8) gene expression and localization, and lastly (9) experiments involving cell proliferation and cell death kinetics. It is anticipated that utilization of this core will greatly facilitate the overall activity of the Program Project.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK035608-16
Application #
6359127
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1985-09-16
Project End
2006-03-31
Budget Start
Budget End
Support Year
16
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Type
DUNS #
041367053
City
Galveston
State
TX
Country
United States
Zip Code
77555
Bhatia, Vandanajay; Cao, Yanna; Ko, Tien C et al. (2016) Parathyroid Hormone-Related Protein Interacts With the Transforming Growth Factor-?/Bone Morphogenetic Protein-2/Gremlin Signaling Pathway to Regulate Proinflammatory and Profibrotic Mediators in Pancreatic Acinar and Stellate Cells. Pancreas 45:659-70
Staloch, Dustin; Gao, Xuxia; Liu, Ka et al. (2015) Gremlin is a key pro-fibrogenic factor in chronic pancreatitis. J Mol Med (Berl) 93:1085-1093
Mrazek, Amy A; Porro, Laura J; Bhatia, Vandanajay et al. (2015) Apigenin inhibits pancreatic stellate cell activity in pancreatitis. J Surg Res 196:8-16
Gao, Xuxia; Cao, Yanna; Staloch, Dustin A et al. (2014) Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS One 9:e89114
Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song et al. (2014) Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis. Am J Physiol Gastrointest Liver Physiol 307:G533-49
Gao, Xuxia; Cao, Yanna; Yang, Wenli et al. (2013) BMP2 inhibits TGF-?-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol 304:G804-13
Deng, Xiyun; Cao, Yanna; Liu, Yan et al. (2013) Overexpression of Evi-1 oncoprotein represses TGF-? signaling in colorectal cancer. Mol Carcinog 52:255-264
Cao, Yanna; Zhang, Weili; Gao, Xuxia et al. (2013) PTHrP is a novel mediator for TGF-?-induced apoptosis. Regul Pept 184:40-6
Cao, Yanna; Yang, Wenli; Tyler, Matthew A et al. (2013) Noggin attenuates cerulein-induced acute pancreatitis and impaired autophagy. Pancreas 42:301-7
Okamura, Daiki; Starr, Marlene E; Lee, Eun Y et al. (2012) Age-dependent vulnerability to experimental acute pancreatitis is associated with increased systemic inflammation and thrombosis. Aging Cell 11:760-9

Showing the most recent 10 out of 438 publications