Arachidonic acid is oxidatively metabolized by three distinct enzymatic pathways: cyclooxygenase; lipoxygenases; and, the most recently discovered, cytochrome P450. The primary metabolites of these pathways are also subject to a further cascade of enzymatic and non-enzymatic transformations resulting in a rich spectrum of biologically active products. Recent studies have implicated the cytochrome P450 branch of the arachidonate cascade in renal function. Also, novel dual pathway metabolites arising from oxidation of arachidonic acid by both cytochrome P450 and cyclooxygenase have been isolated and demonstrated to have potent vasoconstrictor activity in the kidney. The many urgent questions concerning the biogenesis, regulation, and disposition of these eicosanoids in the kidney and their physiological role in renal function will be addressed by: a) Development of synthetic strategies and methodology for producing sufficient quantities of eicosanoids (labeled and unlabeled) for biological evaluation; b) unambiguous total chemical syntheses to confirm structure and stereochemical assignments of novel metabolites; c) assessment of structural variants for structure-activity (SAR) relationships; and d) preparation of selective metabolism inhibitors and eicosanoid analogues with modified activity or stability.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Elijovich, Fernando; Milne, Ginger L; Brown, Nancy J et al. (2018) Two Pools of Epoxyeicosatrienoic Acids in Humans: Alterations in Salt-Sensitive Normotensive Subjects. Hypertension 71:346-355
Sausville, Lindsay N; Gangadhariah, Mahesha H; Chiusa, Manuel et al. (2018) The Cytochrome P450 Slow Metabolizers CYP2C9*2 and CYP2C9*3 Directly Regulate Tumorigenesis via Reduced Epoxyeicosatrienoic Acid Production. Cancer Res 78:4865-4877
Garcia, Victor; Gilani, Ankit; Shkolnik, Brian et al. (2017) 20-HETE Signals Through G-Protein-Coupled Receptor GPR75 (Gq) to Affect Vascular Function and Trigger Hypertension. Circ Res 120:1776-1788
Guo, Zhijun; Sevrioukova, Irina F; Denisov, Ilia G et al. (2017) Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chem Biol 24:1259-1275.e6
Zhang, Hui; Falck, John R; Roman, Richard J et al. (2017) Upregulation of 20-HETE Synthetic Cytochrome P450 Isoforms by Oxygen-Glucose Deprivation in Cortical Neurons. Cell Mol Neurobiol 37:1279-1286
Gangadhariah, Mahesha H; Dieckmann, Blake W; Lantier, Louise et al. (2017) Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia 60:1066-1075
Shuey, Megan M; Billings 4th, Frederic T; Wei, Shouzou et al. (2017) Association of gain-of-function EPHX2 polymorphism Lys55Arg with acute kidney injury following cardiac surgery. PLoS One 12:e0175292
Fan, Fan; Pabbidi, Mallikarjuna R; Ge, Ying et al. (2017) Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries. Am J Physiol Renal Physiol 312:F971-F981
Imig, J D (2016) Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. Adv Pharmacol 77:105-41
Savas, Üzen; Wei, Shouzou; Hsu, Mei-Hui et al. (2016) 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 291:16904-19

Showing the most recent 10 out of 376 publications