Innovative Strategies for Improved Outcomes in Nephrolithiasis. The main focus of this Program Project Grant is to develop and refine ultrasound-based technologies and treatment protocols to improve the noninvasive removal of stones from the kidney with the goal of improving patient outcomes. In this effort, we will refine new technology that uses ultrasonic propulsion (UP) to push stones and residual stone fragments out of the renal pelvicalyceal system and on to the uretero-pelvic junction for passage down the ureter. The UP system is built upon a commercially available ultrasound (US) platform that we have configured to deliver a suite of unique stone-specific imaging modalities (S-mode) specifically tailored to detect stones (even very small, <1 mm, stone fragments), determine fragment size, detect cavitation indicative of the acoustic shielding that interferes with stone breakage, and localize the cavitation in tissue that signals the on- set of tissue injury. We will use UP and S-mode imaging to improve the efficiency of shock wave lithotripsy (SWL) by dispersing fragments that create shielding and by enabling precise determination of the stone breakage endpoint so that patients are not needlessly over-treated. We will also pursue the development, refinement, and validation of a novel noninvasive method that uses focused, low-frequency pulsed US (burst wave lithotripsy, BWL) to reduce stones to small, clinically insignificant particles with minimal injury to surrounding tissue. Over-treatment by SWL is linked to increased adverse effects and is the basis for FDA limits on SW-dose, limits that often prevent treatment with a dose sufficient to render the patient stone free. We will build upon our discovery of SWL treatment strategies that protect the kidney from injury to devise treatment protocols that dramatically exceed current FDA limits for SW dose, yet are entirely safe. That is, we will demonstrate that single session treatment limits for SWL can be exceeded without causing added injury, thus allowing treatment with enough SWs to fully comminute a large stone burden or eliminate stones otherwise difficult to break. Consistent with our goal of improving treatment outcomes for stone patients, we will conduct a multicenter prospective clinical trial to determine if the removal of 'subclinical' attached stones by ureterorenoscopy (assisted by UP) will forestall stone recurrence, thereby improving long-term outcomes.

Public Health Relevance

Stone disease is an increasingly significant concern to the public health, and new treatment strategies are needed to improve patient outcomes: nearly 10% of people in the United States will suffer kidney stones in their lifetimes, and over the past 15 years, the occurrence of stone disease has increased by more than 15%. More than half of these individuals will be recurrent stone formers. Annually, kidney stones account for 3 million visits to U.S. healthcare providers, and costs associated with the diagnosis and treatment of stones, along with the estimated loss of work for patients with the disease, are in excess of $5 billion annually within the United States.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK043881-23
Application #
9302709
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Kirkali, Ziya
Project Start
1997-03-01
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
23
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Washington
Department
Miscellaneous
Type
Organized Research Units
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Zwaschka, Theresa A; Ahn, Justin S; Cunitz, Bryan W et al. (2018) Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation. J Endourol 32:344-349
Connors, Bret A; Schaefer, Ray B; Gallagher, John J et al. (2018) Preliminary Report on Stone Breakage and Lesion Size Produced by a New Extracorporeal Electrohydraulic (Sparker Array) Discharge Device. Urology 116:213-217
Dai, Jessica C; Dunmire, Barbrina; Sternberg, Kevan M et al. (2018) Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images. World J Urol 36:727-732
Janssen, Karmon M; Brand, Timothy C; Bailey, Michael R et al. (2018) Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo. Urology 111:225-229
Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne et al. (2018) The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact. Phys Med Biol 63:025011
Matula, Thomas J; Sapozhnikov, Oleg A; Ostrovsky, Lev A et al. (2018) Ultrasound-based cell sorting with microbubbles: A feasibility study. J Acoust Soc Am 144:41
Williams Jr, James C; Borofsky, Michael S; Bledsoe, Sharon B et al. (2018) Papillary Ductal Plugging is a Mechanism for Early Stone Retention in Brushite Stone Disease. J Urol 199:186-192
Sapozhnikov, Oleg; Nikolaeva, Anastasiia; Bailey, Michael (2018) The effect of shear waves in an elastic sphere on the radiation force from a quasi-Gaussian beam. Proc Meet Acoust 32:
Handa, Rajash K; Territo, Paul R; Blomgren, Philip M et al. (2017) Development of a novel magnetic resonance imaging acquisition and analysis workflow for the quantification of shock wave lithotripsy-induced renal hemorrhagic injury. Urolithiasis 45:507-513
Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A et al. (2017) Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields. IEEE Trans Ultrason Ferroelectr Freq Control 64:374-390

Showing the most recent 10 out of 267 publications