The Tissue Culture Core is intended to be a centralized service facility to perform the cell Culture work and to maintain standardization and quality control. It will serve the majority of the program investigators.
The specific aims of this service core are to 1) grow and maintain specialized cell lines to be used by multiple investigators; 2) prepare large quantities of certain cells for biochemical studies in individual projects; and 3) provide small amounts of intestinal cells to other investigators both within and outside of Johns Hopkins University. Although the Core is largely a service core, it also will continue to serve a more minor role to train investigators using intestinal epithelial cells to culture cells. Daily work (e.g. maintenance of cell lines, preparation of experimental setups, medial preparation) is performed by Mr. Dwight Derr. The Quantity of daily work is defined by the written requests from each Project leader. This allows coordination of the work, achievement of maximal efficiency and cost accounting for the work performed. Strict rules are in place requiring all users to adhere to biosafety level 2 precautions and to use sterile technique at all times in the facility. Mr. Derr consults as necessary with Dr. Sears regarding any questions or problems arising in the Tissue Culture Core.

Project Start
2001-09-30
Project End
2003-06-30
Budget Start
Budget End
Support Year
10
Fiscal Year
2002
Total Cost
$268,419
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Aihara, Eitaro; Montrose, Marshall H (2014) Importance of Ca(2+) in gastric epithelial restitution-new views revealed by real-time in vivo measurements. Curr Opin Pharmacol 19:76-83
Singh, Varsha; Yang, Jianbo; Chen, Tiane-e et al. (2014) Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol 12:27-31
Lin, Rong; Murtazina, Rakhilya; Cha, Boyoung et al. (2011) D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 140:560-71
Hartley, Jane Louise; Zachos, Nicholas C; Dawood, Ban et al. (2010) Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 138:2388-98, 2398.e1-2
Zachos, Nicholas C; Hodson, Caleb; Kovbasnjuk, Olga et al. (2008) Elevated intracellular calcium stimulates NHE3 activity by an IKEPP (NHERF4) dependent mechanism. Cell Physiol Biochem 22:693-704
Li, Xuhang; Donowitz, Mark (2008) Fractionation of subcellular membrane vesicles of epithelial and nonepithelial cells by OptiPrep density gradient ultracentrifugation. Methods Mol Biol 440:97-110
Lee, Aven; Rayfield, Andrew; Hryciw, Deanne H et al. (2007) Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial glutamate transporter GLAST. Glia 55:119-29
Donowitz, Mark; Singh, Siddharth; Salahuddin, Farah F et al. (2007) Proteome of murine jejunal brush border membrane vesicles. J Proteome Res 6:4068-79
Murtazina, Rakhilya; Kovbasnjuk, Olga; Zachos, Nicholas C et al. (2007) Tissue-specific regulation of sodium/proton exchanger isoform 3 activity in Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) null mice. cAMP inhibition is differentially dependent on NHERF1 and exchange protein directly activated by cAMP in ileum versus J Biol Chem 282:25141-51
Donowitz, Mark; Li, Xuhang (2007) Regulatory binding partners and complexes of NHE3. Physiol Rev 87:825-72

Showing the most recent 10 out of 110 publications