ANIMAL CORE The objective of the Animal Core is to provide investigators of the Program Project with scientific and technical support for the design and execution of their studies.
The specific aims of this core are: 1. To induce diabetes in animals and maintain the animals in a healthy state (routinely monitored for compliance with standards of health appropriate for diabetic animals) and in carefully controlled levels of glycemic control, 2. To coordinate the acquisition and distribution of tissues and body fluids from experimental animals among Program Project investigators, 3. To provide assistance with scientific and execution of protocols involving special diet and pharmacological treatments in animals, and 4. To provide training for new investigators of the Program Project in the use of animal models of diabetes and its complications. Service to the Investigators of the Program Project will be provided by a team consisting of the director of our unit for animal studies (V. Monnier, MD, T. Kern, PhD), and a 60% FTE Research Assistant who will assume the day-to-day operation of the facility in collaboration with the staff of the Animal Resources Center at CWRU).

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK057733-03
Application #
6659261
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
$94,628
Indirect Cost
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Alexander, Nathan S; Palczewska, Grazyna; Stremplewski, Patrycjusz et al. (2016) Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. Biomed Opt Express 7:2671-91
Kern, Elizabeth F O; Erhard, Penny; Sun, Wanjie et al. (2010) Early urinary markers of diabetic kidney disease: a nested case-control study from the Diabetes Control and Complications Trial (DCCT). Am J Kidney Dis 55:824-34
Kern, Timothy S; Du, Yunpeng; Miller, Casey M et al. (2010) Overexpression of Bcl-2 in vascular endothelium inhibits the microvascular lesions of diabetic retinopathy. Am J Pathol 176:2550-8
Ozdemir, Aylin M; Hopfer, Ulrich; Rosca, Mariana V et al. (2008) Effects of advanced glycation end product modification on proximal tubule epithelial cell processing of albumin. Am J Nephrol 28:14-24
Kern, Timothy S (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103
Lu, Liang; Erhard, Penny; Salomon, Robert G et al. (2007) Serum vitamin E and oxidative protein modification in hemodialysis: a randomized clinical trial. Am J Kidney Dis 50:305-13
Kern, Timothy S; Miller, Casey M; Du, Yunpeng et al. (2007) Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes 56:373-9
Staniszewska, Magdalena M; Nagaraj, Ram H (2006) Upregulation of glyoxalase I fails to normalize methylglyoxal levels: a possible mechanism for biochemical changes in diabetic mouse lenses. Mol Cell Biochem 288:29-36
Genuth, Saul; Sun, Wanjie; Cleary, Patricia et al. (2005) Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications p Diabetes 54:3103-11
Sell, David R; Biemel, Klaus M; Reihl, Oliver et al. (2005) Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem 280:12310-5

Showing the most recent 10 out of 32 publications