Transcriptional regulators such as nuclear receptors mediate distinct actions in different cellular and physiologic contexts by responding selectively to small molecule signals and by interacting differentially with an array of co-regulatory factors. The long term goal of this project is to understand the combinatorial principles that govern the interactions of nuclear receptors with cofactors, and the effects of ligands, other cofactors, and response elements on those interactions. The general strategy of the proposed research is to use a combination of molecular, genetic chemical and structural approaches to define pairwise and higher order interactions.
The specific aims for this project are: (1) to define for various receptors (TR, GR, ER) the specificity determinants for interactions with LxxLL-containing peptide and coactivator fragments; (2) to identify TR LBD repression domains and test structural and functional relationships of activation and repression surfaces; and (3) to determine factor interactions at specific response elements in vivo and test interactions of functional surfaces in vitro. Nuclear receptors have been implicated in a wide range of diseases, including cancer, hypertension and inflammation, and IR ligands are widely used as therapeutics, diagnostics and chemopreventatives. Thus, understanding the principles and mechanisms of nuclear receptor action has important implications for health and for detecting, treating and curing disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK058390-03
Application #
6618180
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2002-08-01
Project End
2003-07-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Shiau, Andrew K; Harris, Seth F; Southworth, Daniel R et al. (2006) Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329-40
Ota, Nobuyuki; Agard, David A (2005) Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. J Mol Biol 351:345-54
Moore, Jamie M R; Galicia, Sarah J; McReynolds, Andrea C et al. (2004) Quantitative proteomics of the thyroid hormone receptor-coregulator interactions. J Biol Chem 279:27584-90
Sandler, Ben; Webb, Paul; Apriletti, James W et al. (2004) Thyroxine-thyroid hormone receptor interactions. J Biol Chem 279:55801-8
Harris, Seth F; Shiau, Andrew K; Agard, David A (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12:1087-97
Huber, B Russell; Desclozeaux, Marion; West, Brian L et al. (2003) Thyroid hormone receptor-beta mutations conferring hormone resistance and reduced corepressor release exhibit decreased stability in the N-terminal ligand-binding domain. Mol Endocrinol 17:107-16
Sablin, Elena P; Krylova, Irina N; Fletterick, Robert J et al. (2003) Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell 11:1575-85
Borngraeber, Sabine; Budny, Mary-Jane; Chiellini, Grazia et al. (2003) Ligand selectivity by seeking hydrophobicity in thyroid hormone receptor. Proc Natl Acad Sci U S A 100:15358-63
Kelly, Alexander E; Ou, Horng D; Withers, Richard et al. (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124:12013-9