The Moore laboratory found that specific activation of the nuclear receptor LRH-1 (NR5A2) by the novel agonist ligand dilauroyl phosphatidylcholine (DLPC) potently reduces hepatic steatosis and improves overall insulin sensitivity in mouse models. Thus, LRH-1 activation provides an attractive therapeutic approach to treating two of the primary pathologies of the Metabolic Syndrome. Preliminary results indicate that this LRH- 1 mediated pathway is sensitive to changes in methyl pools and one-carbon metabolism, and that LRH-1 mediates exciting, but long neglected anti-steatotic effects of phosphatidylcholine (PC) and dietary methyl donor supplementation. Published and our additional preliminary results, including both functional and bioinformatics studies, demonstrate a highly significant functional interaction between LRH-1 and SRC-2. In accord with this, the phenotypic effects of LRH-1 activation overiap with, but are opposite to those associated with loss of hepatic SRC-2 function. Based on these compelling results, the specific hypothesis of this project is that SRC-2 is an essential mediator of the beneficial effects of LRH-1 activation in the metabolic syndrome.
Three specific aims will dissect the molecular basis and physiological significance of the functional interactions of SRC-2 and LRH-1: 1) Define the functional interactions of LRH-1 and SRC-2 with each other, and with the key modifiers SHP and AMP kinase. 2): Define the impact of modulating methyl pools on SRC-2 activity and PTMs, particulariy the possibility that changes in SRC-2 methylation mediate metabolic responses to alterations in one carbon metabolism. 3) Determine the impact of a liver- specific SRC-2 knockout on the effects of DLPC and phosphatidylcholine supplementation in both acute gene expression responses in normal mice and the anti-diabetic and lipotropic responses in insulin resistant mice.
This project will critically test a specific prediction of the overall master metabolic hypothesis for the function of SRC-2, and will provide novel insights into potential therapeutic approaches for the metabolic syndrome.
Dasgupta, Subhamoy; Rajapakshe, Kimal; Zhu, Bokai et al. (2018) Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556:249-254 |
Rohira, Aarti D; Yan, Fei; Wang, Lei et al. (2017) Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Res 77:4293-4304 |
Zhao, Fei; Franco, Heather L; Rodriguez, Karina F et al. (2017) Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357:717-720 |
Xu, Yong; O'Malley, Bert W; Elmquist, Joel K (2017) Brain nuclear receptors and body weight regulation. J Clin Invest 127:1172-1180 |
Xu, Y; Qin, L; Sun, T et al. (2017) Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 36:1157-1166 |
Xie, Xin; Wu, San-Pin; Tsai, Ming-Jer et al. (2017) The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 125:375-403 |
Yi, Ping; Wang, Zhao; Feng, Qin et al. (2017) Structural and Functional Impacts of ER Coactivator Sequential Recruitment. Mol Cell 67:733-743.e4 |
Lee, Hui-Ju; Kao, Chung-Yang; Lin, Shih-Chieh et al. (2017) Dysregulation of nuclear receptor COUP-TFII impairs skeletal muscle development. Sci Rep 7:3136 |
Wu, San-Pin; Yu, Cheng-Tai; Tsai, Sophia Y et al. (2016) Choose your destiny: Make a cell fate decision with COUP-TFII. J Steroid Biochem Mol Biol 157:7-12 |
Hinton Jr, Antentor Othrell; Yang, Yongjie; Quick, Ann P et al. (2016) SRC-1 Regulates Blood Pressure and Aortic Stiffness in Female Mice. PLoS One 11:e0168644 |
Showing the most recent 10 out of 181 publications