Project 4 will test the hypothesis that CGG trinucleotide repeats in the FMRI gene, the most prevalent single gene disorder contributing to autism risk, influence susceptibility to non-dioxin-like (NDL) persistent organic pollutants (POPs) identified in Core 3 and pro-inflammatory cytokine profiles identified in Project 3 to predominate in plasma of women participating in the MARBLES study during pregnancy. A major advantage of the neurotypical and susceptible neuronal cell models to be used in our studies is that they originate from the same individual;thus, individual genetic background variation is excluded as a confounding variable.
The specific aims are:
Aim 1 : Produce isoautosomal iPSC-derived neuronal precursor cells (NPCs) possessing a normal FMRI gene and NPCs possessing an active FMRI CGG repeat expansion in the mid-premutation, high-premutation, and full-mutation (FXS) range.
Aim 2 : Identify morphological and functional differences between neuronal cultures with a normal FMRI active allele and neuronal cultures with an active FMRI CGG repeat expansion in the mid-premutation, high premutation, or full-mutation (FXS) range.
Aim 2. 1: Identify temporal differences the development of synchronized Ca^""""""""^ oscillations, electrophysiological properties, mitochondrial bioenergetics and oxidative stress among genotypes.
Aim 2. 2: Determine how functional anomalies identified in Aim 2.1 influence Ca2+- dependent signaling pathways required for activity dependent dendritic growth, especially the CaMKl->CREB-->Wnt and P13K->AktTSC1/2mTOR signaling pathways.
Aim 3 : Define the spatiotemporal profile of neuropathological sequelae caused by exposures that mimic the gestational environment in mothers participating in the MARBLES study.
Aim 3. 1: Determine how exposures to individual congeners and complex mixtures that model the most abundant of PBDEs, PCBs, or perfluorinated compounds in maternal plasma alter the morphometric and functional outcomes measured in Aim 2. Identify critical windows of susceptibility among genotypes.
Aim 3. 2: Determine how exposures to cytokine/chemokine profiles identified in maternal plasma influence the morphometric and functional outcomes measured in Aim 2.
Aim 3. 3: Determine whether exposures tested in Aim 3.1 and/or Aim 3.2 differentially alter epigenetlc signatures of global and gene specific (F0XP3, MeCP2, Dnmt3a) methylation among genotypes.

Public Health Relevance

The isoautosomal neuronal models proposed will permit for the first time investigations of how a defined autism susceptibility gene influences susceptibility to environmental factors, e.g., neurotoxicants and cytokine profiles identified in the gestational environment of mothers at high risk for giving birth to an autistic child. Our approach also permits detailed analysis of the molecular and cellular mechanisms of gene X environment interactions promoting neurodevelopmental impairments relevant to autism.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
2P01ES011269-11
Application #
8533669
Study Section
Special Emphasis Panel (ZES1-LKB-K (P0))
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
11
Fiscal Year
2013
Total Cost
$109,730
Indirect Cost
$38,477
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Hart, Lynette A; Thigpen, Abigail P; Willits, Neil H et al. (2018) Affectionate Interactions of Cats with Children Having Autism Spectrum Disorder. Front Vet Sci 5:39
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Jones, Karen L; Pride, Michael C; Edmiston, Elizabeth et al. (2018) Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psychiatry :
Rose, Destanie R; Yang, Houa; Serena, Gloria et al. (2018) Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun 70:354-368
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Shin, Hyeong-Moo; Schmidt, Rebecca J; Tancredi, Daniel et al. (2018) Prenatal exposure to phthalates and autism spectrum disorder in the MARBLES study. Environ Health 17:85
Keil, Kimberly P; Miller, Galen W; Chen, Hao et al. (2018) PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms. Arch Toxicol 92:3163-3173
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Chen, Xiaopeng; Walter, Kyla M; Miller, Galen W et al. (2018) Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls. Biomed Chromatogr 32:e4185
Jones, Karen L; Van de Water, Judy (2018) Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry :

Showing the most recent 10 out of 327 publications