Lipid Peroxidation and Antioxidant Mechanisms is a competitive renewal proposal for an NIEHS Program- Project that was funded in September of 2005. Environmental stress and lifestyle play an important role in diseases that contribute significantly to mortality in the U.S. Cigarette smoking, alcohol consumption and poor diet combine with other environmental factors to affect the incidence of several diseases. The formation of oxidants is a hallmark of many of these diseases and lipid peroxidation is a common result of diverse environmental insults. Indeed, oxidative stress has been closely associated with the onset of pathologies as diverse as cancer and cardiovascular disease. The underlying mechanisms linking environmental stresses with disease pathogenesis remain obscure. The studies proposed here will test the hypothesis that the balance of competing oxidation pathways for different lipid substrates governs adaptation to oxidative stress and oxidative injury. The Program Project also directly addresses the hypothesis that protein adduction by lipid peroxidation products alters cellular signaling and modulates diseases linked to oxidative stress. This Program Project includes four research projects and one scientific core facility in a tightly-knit group that will provide important insights into the role that oxidation and antioxidants play in human pathophysiology. Project 1 provides a mechanistic framework for understanding peroxidation profiles and leads the chemistry that provides novel lipid affinity-tags for studying protein-electrophile adducts. Project 2 explores the chemistry and biology of eicosapentaenoic acid (EPA), a fatty acid prominent in fish oil, and explores the hypothesis that EPA oxidation products may contribute significantly to the biological properties of this fatty acid. Project 3 evaluates electrophiles that play critical roles in cell signaling and provides the biological platform for studying lipid affinity tags in whole cells. Project 4 suggests that secondary electrophilic products of lipid peroxidation play critical roles in oxidant-associated molecular pathologies and explores methodologies for identification and analysis of protein adducts of these electrophiles. All of the projects are highly collaborative and are highly dependent on the Lipidomics Analysis scientific core.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES013125-08
Application #
8294727
Study Section
Special Emphasis Panel (ZES1-TN-D (PO))
Program Officer
Lawler, Cindy P
Project Start
2004-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
8
Fiscal Year
2012
Total Cost
$1,459,512
Indirect Cost
$508,690
Name
Vanderbilt University Medical Center
Department
Biochemistry
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Lizama-Manibusan, Britney N; Klein, Sharon; McKenzie, Jennifer R et al. (2016) Analysis of a Nitroreductase-Based Hypoxia Sensor in Primary Neuronal Cultures. ACS Chem Neurosci 7:1188-91
Camarillo, Jeannie M; Rose, Kristie L; Galligan, James J et al. (2016) Covalent Modification of CDK2 by 4-Hydroxynonenal as a Mechanism of Inhibition of Cell Cycle Progression. Chem Res Toxicol 29:323-32
Pfeffer, Bruce A; Xu, Libin; Porter, Ned A et al. (2016) Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density. Exp Eye Res 145:297-316
Codreanu, S G; Liebler, D C (2015) Novel approaches to identify protein adducts produced by lipid peroxidation. Free Radic Res 49:881-7
Xu, Libin; Kliman, Michal; Forsythe, Jay G et al. (2015) Profiling and Imaging Ion Mobility-Mass Spectrometry Analysis of Cholesterol and 7-Dehydrocholesterol in Cells Via Sputtered Silver MALDI. J Am Soc Mass Spectrom 26:924-33
Aluise, Christopher D; Camarillo, Jeannie M; Shimozu, Yuki et al. (2015) Site-specific, intramolecular cross-linking of Pin1 active site residues by the lipid electrophile 4-oxo-2-nonenal. Chem Res Toxicol 28:817-27
Mathews, Thomas P; Hill, Salisha; Rose, Kristie L et al. (2015) Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chem Biol 10:1258-68
Bruntz, Ronald C; Taylor, Harry E; Lindsley, Craig W et al. (2014) Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J Biol Chem 289:600-16
Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex (2014) Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 66:1033-79
Korade, Zeljka; Xu, Libin; Harrison, Fiona E et al. (2014) Antioxidant supplementation ameliorates molecular deficits in Smith-Lemli-Opitz syndrome. Biol Psychiatry 75:215-22

Showing the most recent 10 out of 130 publications