The geometry of metal sites is intimately connected to the electronic structure of a metal, and thus ultimately to metallo-protein function. Fully, one-third of all proteins in the Protein Databank, which are used extensively by researchers world-wide, are metalloproteins. However, in the majority of these structures the accuracy of the metal ligand bonds is too low to make statements about the metal properties as reflected in the geometry. With the advent of freezing techniques and synchrotron radiation it is now feasible to collect high (1.7 Angstroms_ to ultra- high resolution data (0.8 Angstroms) on many metalloproteins. At the same time increases in computer speed and memory sizes finally allow rigorous full-matrix analyses of this data to determine standard uncertainties (formerly known as estimated standard deviations) of the bond lengths and angles. Metalloproteins are especially amenable to such analyses because the greater proportional scattering power of the electron-dense metal atom results in an increase in the positional certainty, and thus an increase in the accuracy of bond lengths and bond angles including the metal. For metalloproteins with data of resolution less than about 1.7-1.5 Angstroms, it becomes possible to remove all restraints on the metal to ligand distances thus removing any bias such restraints might have on metal site geometry. We propose to determine a number of iron-metalloprotein structures, including ones from other project members, to 1.7-0.8 Angstroms resolutions, refine the structures with anisotropic thermal parameters, hydrogens and split side-chains (as data to parameter ratios allow), and analyze the structures with full- matrix least-squares to determine standard uncertainties to determine the geometry of other metal sites including copper, zinc, calcium and others. The resulting metal-ligand bond lengths and bond angles will be added to our metalloprotein database and distributed via the World Wide Web. These highly accurate structures with known standard uncertainties will help answer questions about the extent to which proteins can distort metal structures, and allow more accurate calculations of metal electronic structures, ultimately leading to better understanding of metalloprotein structure and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM048495-08
Application #
6455794
Study Section
Project Start
2001-06-01
Project End
2003-05-31
Budget Start
Budget End
Support Year
8
Fiscal Year
2001
Total Cost
$83,952
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Hays, Anna-Maria A; Dunn, Alexander R; Chiu, Richard et al. (2004) Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. J Mol Biol 344:455-69
Hearn, Amy S; Fan, Li; Lepock, James R et al. (2004) Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. J Biol Chem 279:5861-6
Fee, James A; Todaro, Thomas R; Luna, Eugene et al. (2004) Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme. Biochemistry 43:12162-76
Bunick, Christopher G; Nelson, Melanie R; Mangahas, Sheryll et al. (2004) Designing sequence to control protein function in an EF-hand protein. J Am Chem Soc 126:5990-8
Greenleaf, William B; Perry, J Jefferson P; Hearn, Amy S et al. (2004) Role of hydrogen bonding in the active site of human manganese superoxide dismutase. Biochemistry 43:7038-45
Fee, James A; Castagnetto, Jesus M; Case, David A et al. (2003) The circumsphere as a tool to assess distortion in [4Fe-4S] atom clusters. J Biol Inorg Chem 8:519-26
Hays, Anna-Maria A; Gray, Harry B; Goodin, David B (2003) Trapping of peptide-based surrogates in an artificially created channel of cytochrome c peroxidase. Protein Sci 12:278-87
Camba, Raul; Jung, Yean-Sung; Hunsicker-Wang, Laura M et al. (2003) Mechanisms of redox-coupled proton transfer in proteins: role of the proximal proline in reactions of the [3Fe-4S] cluster in Azotobacter vinelandii ferredoxin I. Biochemistry 42:10589-99
Hunsicker-Wang, Laura M; Heine, Andreas; Chen, Ying et al. (2003) High-resolution structure of the soluble, respiratory-type Rieske protein from Thermus thermophilus: analysis and comparison. Biochemistry 42:7303-17
Hearn, Amy S; Stroupe, M Elizabeth; Cabelli, Diane E et al. (2003) Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: insertion of valine C gamma into the substrate access channel. Biochemistry 42:2781-9

Showing the most recent 10 out of 53 publications