Voltage-gated sodium channels (VGSCs) are responsible for the action potential in nerve and muscle. Drugs (such as local anesthetics) and toxins (such as tetrodotoxin, TTX) that block VGSCs have been mainstays in pain medication and basic neuroscience research. With notable exceptions, these small molecules do not discriminate readily among the various subtypes of VGSCs. For example, TTX is a very potent blocker of both the skeletal muscle subtype (NaV1.4) and several of the subtypes found in brain (e.g., NaV1.2). In contrast, the classic mu-conopeptides readily block NaV1.4 but not NaV1.2. A simple explanation for the greater specificity of conopeptides is that they are much larger than TTX with a correspondingly larger """"""""footprint"""""""";i.e., the larger ligand has more locations on its surface that must complement the surface on its cognate channel to which it binds. The major thrust of the proposed research is to generate conopeptides that target specific subtypes of VGSCs, particularly those (including TTX-resistant ones) that are found in sensory neurons that convey pain information. Thus far, we have discovered new mu-conopeptides that: a) irreversibly block a fraction of the TTX-resistant sodium currents in sensory neurons of rodents;b) discriminate among the TTX-sensitive subtypes with a specificity different from that of classic mu-conopeptides (e.g., block NaV1.2 more effectively than NaV1.4);and c) are analgesic in rodents. We also found that a member of a different family of conopeptides, muO-conopeptide MrVIB, blocks TTX-resistant (in addition to TTX-sensitive) VGSCs and also exhibits analgesic activity in rats. The two conopeptides block VGSCs differently: mu-conopeptides essentially plug the pore of the channel, whereas muO-conopeptides act by a mechanism that remains to be established. We will scrutinize these conopeptides and their synthetic derivatives to: a) obtain ligands for VGSCs that are more selective, and b) elucidate their mechanisms of action. Conopeptide activities will be scrutinized mainly by electrophysiology of mammalian primary sensory neurons and Xenopus oocytes expressing cloned mammalian VGSCs. These conopeptides are potential analgesics and lead compounds that may be developed into medications to alleviate pain.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM048677-17
Application #
7929640
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
17
Fiscal Year
2009
Total Cost
$219,400
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Yan, Yijin; Peng, Can; Arvin, Matthew C et al. (2018) Nicotinic Cholinergic Receptors in VTA Glutamate Neurons Modulate Excitatory Transmission. Cell Rep 23:2236-2244
Hone, Arik J; McIntosh, J Michael (2018) Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 592:1045-1062
Hone, Arik J; Talley, Todd T; Bobango, Janet et al. (2018) Molecular determinants of ?-conotoxin potency for inhibition of human and rat ?6?4 nicotinic acetylcholine receptors. J Biol Chem 293:17838-17852
Banala, Sambashiva; Arvin, Matthew C; Bannon, Nicholas M et al. (2018) Photoactivatable drugs for nicotinic optopharmacology. Nat Methods 15:347-350
Hone, Arik J; Servent, Denis; McIntosh, J Michael (2018) ?9-containing nicotinic acetylcholine receptors and the modulation of pain. Br J Pharmacol 175:1915-1927
Espino, Samuel S; Robinson, Samuel D; Safavi-Hemami, Helena et al. (2018) Conopeptides promote itch through human itch receptor hMgprX1. Toxicon 154:28-34
Richter, Katrin; Sagawe, Sabrina; Hecker, Andreas et al. (2018) C-Reactive Protein Stimulates Nicotinic Acetylcholine Receptors to Control ATP-Mediated Monocytic Inflammasome Activation. Front Immunol 9:1604
Hiller, Sebastian Daniel; Heldmann, Sarah; Richter, Katrin et al. (2018) ?-Nicotinamide Adenine Dinucleotide (?-NAD) Inhibits ATP-Dependent IL-1? Release from Human Monocytic Cells. Int J Mol Sci 19:
Peng, Can; Yan, Yijin; Kim, Veronica J et al. (2018) Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission. Eur J Neurosci :
Chen, De-Jie; Gao, Fen-Fei; Ma, Xiao-Kuang et al. (2018) Pharmacological and functional comparisons of ?6/?3?2?3-nAChRs and ?4?2-nAChRs heterologously expressed in the human epithelial SH-EP1 cell line. Acta Pharmacol Sin 39:1571-1581

Showing the most recent 10 out of 277 publications