This research will continue our effort to develop small molecules to target the wild-type and drug-resistant HIV proteases. In addition, we will identify conserved HIV RNA sequences essential for the translation of the protease and develop small molecules to target such sequences. The ultimate goal is to develop new small molecule therapy to tackle the problem of drug resistance in HIV infection.
The specific aims i nclude: 1. Develop new generation HIV protease inhibitors based on the proteases of resistant strains developed against TL-3 and existing inhibitors in the clinic. 2. Define the specificity, especially of P1 -P3 groups in drug-resistant HIV proteases. 3. Identify conserved RNA sequences in the untranslational and the protease- translational domains targets for drug discovery. 4. Develop small molecule arrays for use to identify new drug candidates to target such RNA sequences.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM048870-11
Application #
6553753
Study Section
Special Emphasis Panel (ZRG1)
Project Start
1992-09-30
Project End
2007-08-31
Budget Start
Budget End
Support Year
11
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Morris, Garrett M; Green, Luke G; Radi?, Zoran et al. (2013) Automated docking with protein flexibility in the design of femtomolar ""click chemistry"" inhibitors of acetylcholinesterase. J Chem Inf Model 53:898-906
Breuer, Sebastian; Sepulveda, Homero; Chen, Yu et al. (2011) A cleavage enzyme-cytometric bead array provides biochemical profiling of resistance mutations in HIV-1 Gag and protease. Biochemistry 50:4371-81
Chang, Max W; Torbett, Bruce E (2011) Accessory mutations maintain stability in drug-resistant HIV-1 protease. J Mol Biol 410:756-60
Chang, Max W; Giffin, Michael J; Muller, Rolf et al. (2010) Identification of broad-based HIV-1 protease inhibitors from combinatorial libraries. Biochem J 429:527-32
Chang, Max W; Ayeni, Christian; Breuer, Sebastian et al. (2010) Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS One 5:e11955
Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana et al. (2008) Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins. Virology 371:394-404
Nelson, Josh D; Kinkead, Heather; Brunel, Florence M et al. (2008) Antibody elicited against the gp41 N-heptad repeat (NHR) coiled-coil can neutralize HIV-1 with modest potency but non-neutralizing antibodies also bind to NHR mimetics. Virology 377:170-83
Giffin, Michael J; Heaslet, Holly; Brik, Ashraf et al. (2008) A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51:6263-70
Huey, Ruth; Morris, Garrett M; Olson, Arthur J et al. (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145-52
Heaslet, Holly; Rosenfeld, Robin; Giffin, Mike et al. (2007) Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallogr D Biol Crystallogr 63:866-75

Showing the most recent 10 out of 60 publications