Linkage disequilibrium analysis is an essential tool in refining the locations of disease genes and isolating such genes by positional cloning, and is likely to increase in importance as the sequence of the human genome becomes more complete. Understanding what normal variation in people and what drives variation is critical for a complete understanding of the information that the sequence provides. Yet very little is known about linkage disequilibrium in different populations or even in different individuals over large genomic regions. The overall objective of this project is to develop novel methods to examine extended molecular haplotypes and to obtain accurate physical mapping distances for relevant polymorphic markers for analysis of recombination and genetic disequilibrium over large genomic distances. Several essential elements of positional cloning-molecular haplotyping to set phase, discovery of new polymorphic markers, and analysis of physical distances between markers in disease gene regions-are time consuming and laborious. Our initial goal is to develop new methods for haplotype analysis and regional mapping that are based on the use of isothermal amplification and single-stranded cloning vectors. Their utility will be examined using a 1 Mb or more regions on the p arm of chromosome 6 that roughly centers on the hemochromatosis gene for which there is a well-defined clone contig with numerous polymorphic markers. The region contains a domain at the extreme centromeric end that is at least partially refractory to cloning due, apparently, to the presence of alpha satellite repeat sequences with an adjacent segment of DNA that is represented at a number of other sites in the genome. This will present a 'real' test of the application of linkage disequilibrium methods and theory. Clusters of 3-4 polymorphic markers, encompassing 20-30 kb, will be examined in African (Biaka), mixed European, and AmerIndian (PIMA) populations, with the cluster spaced at intervals of 80-100 kb over 1Mb. This will allow estimates of disequilibrium at intermediate distances (70-100 kb), where recombination effects may be significant, as well as at short distances (8-10 kb). The choice of marker spacing is optimal both for analysis of extended molecular haplotypes and for the development of methods of trapping genomic DNA strands from test individuals in an allele-specific manner, since it provides two target sizes (10 kb and 100 kb). Retrieval of allele-specific DNA segments from individuals by allele-specific amplification and affinity-purification may provide substrates for more rapid analysis of genomic regions for both basic research and positional cloning.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM057672-02
Application #
6107882
Study Section
Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Heffelfinger, Christopher; Pakstis, Andrew J; Speed, William C et al. (2014) Haplotype structure and positive selection at TLR1. Eur J Hum Genet 22:551-7
Murdoch, John D; Speed, William C; Pakstis, Andrew J et al. (2013) Worldwide population variation and haplotype analysis at the serotonin transporter gene SLC6A4 and implications for association studies. Biol Psychiatry 74:879-89
Donnelly, Michael P; Paschou, Peristera; Grigorenko, Elena et al. (2012) A global view of the OCA2-HERC2 region and pigmentation. Hum Genet 131:683-96
Reich, David; Patterson, Nick; Campbell, Desmond et al. (2012) Reconstructing Native American population history. Nature 488:370-4
Pakstis, Andrew J; Fang, Rixun; Furtado, Manohar R et al. (2012) Mini-haplotypes as lineage informative SNPs and ancestry inference SNPs. Eur J Hum Genet 20:1148-54
Nakagome, Shigeki; Mano, Shuhei; Kozlowski, Lukasz et al. (2012) Crohn's disease risk alleles on the NOD2 locus have been maintained by natural selection on standing variation. Mol Biol Evol 29:1569-85
Godshalk, S E; Paranjape, T; Nallur, S et al. (2011) A Variant in a MicroRNA complementary site in the 3' UTR of the KIT oncogene increases risk of acral melanoma. Oncogene 30:1542-50
Pelletier, Cory; Speed, William C; Paranjape, Trupti et al. (2011) Rare BRCA1 haplotypes including 3'UTR SNPs associated with breast cancer risk. Cell Cycle 10:90-9
Liu, Nianjun; Zhao, Hongyu; Patki, Amit et al. (2011) Controlling Population Structure in Human Genetic Association Studies with Samples of Unrelated Individuals. Stat Interface 4:317-326
Kidd, Judith R; Friedlaender, Françoise; Pakstis, Andrew J et al. (2011) Single nucleotide polymorphisms and haplotypes in Native American populations. Am J Phys Anthropol 146:495-502

Showing the most recent 10 out of 73 publications