The defining characteristic of systems biology is that it seeks to develop a systems view of biology as opposed to a components view. This project aims to develop?in a feedback cycle that guides further experimentation?predictive computational models that capture the overall dynamics of the molecular network that underlies the shift of Neurospora from mycelia growth to asexual spore development through conidiation. Initial efforts will be directed towards construction of a predictive model for regulatory networks and correlation of this network with existing and new transcriptome and genomic data. This model will be tested and refined through incorporation of new data arising from Project 3 and, most importantly, via perturbation tests facilitated through the use of strains developed in Project 1 and characterized using the tools employed in Project 3. In addition, we will develop a comprehensive model of steady state metabolism in Neurospora and, by combining this model with our regulatory network model, make testable predictions about metabolic state corresponding to different gene expression states

Public Health Relevance

Filamentous fungi, typically known as molds, are common animal and plant pathogens, but they are also widely used as industrial strains to provide antibiotics, chemicals, enzymes, and Pharmaceuticals. We'd be dead without them but they can kill us. We seek to understand how genes and proteins work together to regulate fungal growth and development, so as to enhance the good things and control the bad things produced by fungi.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM068087-10
Application #
8466988
Study Section
Special Emphasis Panel (ZRG1-GGG-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$355,110
Indirect Cost
$44,305
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Qiu, Rongde; Zhang, Jun; Xiang, Xin (2018) p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation. J Biol Chem 293:15606-15619
Heller, Jens; Clavé, Corinne; Gladieux, Pierre et al. (2018) NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. Proc Natl Acad Sci U S A 115:E2292-E2301
Wang, Zheng; Wang, Junrui; Li, Ning et al. (2018) Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 27:216-232
Fischer, Monika S; Wu, Vincent W; Lee, Ji E et al. (2018) Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa. Genetics 209:489-506
Serrano, Antonio; Illgen, Julia; Brandt, Ulrike et al. (2018) Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. J Cell Sci 131:
De Souza, Colin P; Hashmi, Shahr B; Hage, Natalie et al. (2017) Location and functional analysis of the Aspergillus nidulans Aurora kinase confirm mitotic functions and suggest non-mitotic roles. Fungal Genet Biol 103:1-15
Decker, Logan M; Xiao, Hua; Boone, Erin C et al. (2017) The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA. G3 (Bethesda) 7:1149-1155
Samarajeewa, Dilini A; Manitchotpisit, Pennapa; Henderson, Miranda et al. (2017) An RNA Recognition Motif-Containing Protein Functions in Meiotic Silencing by Unpaired DNA. G3 (Bethesda) 7:2871-2882
Havlik, David; Brandt, Ulrike; Bohle, Kathrin et al. (2017) Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microb Cell Fact 16:128
Ivanov, Ivaylo P; Wei, Jiajie; Caster, Stephen Z et al. (2017) Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. MBio 8:

Showing the most recent 10 out of 153 publications