Phosphonic acids represent a potent, yet underexploited, group of bioactive compounds with great promise in the treatment of human disease. A wide variety of phosphonates are produced in nature and many have useful bioactive properties. Among these are fosfomycin, a common treatment for acute cystitis during pregnancy, and FR900098, a novel treatment (and cure!) for malaria. Others include phosphinothricintripeptide (PIT), a widely used herbicide, and K- 26, a compound with great promise in the treatment of high blood pressure. The targets of phosphonate inhibitors vary widely, allowing their use in the treatment of a wide variety of conditions, yet despite their utility, surprisingly little is known regarding the biosynthesis of these natural products. As outlined in this proposal, we believe there is ample reason to believe that (i) additional natural phosphonic acid products remain to be discovered (including ones with novel therapeutic targets), (ii) that a wealth of novel biochemistry and secondary metabolism will be discovered during characterization of phosphonic acid biosynthetic pathways, (iii) that currently known compounds can be modified and improved and (iv) that more economical methods for their production can be developed. The proposed Program Project addresses each of these topics via a multidisciplinary research program involving microbiology, biochemistry, chemistry, metabolic engineering and structural biology. We propose four intertwined research projects to discover, design and develop novel and known phosphonic acid antibiotics. The first project involves discovery, identification and characterization of gene clusters encoding phosphonic acid biosynthesis using microbial genetics and molecular biology. The second project involves the chemical and biochemical characterization of these biosynthetic pathways, including several entirely unprecedented enzymatic reactions involved in synthesis of these C-P bond-containing compounds. The third project involves bioengineering of natural and designed phosphonic acid biosynthetic pathways to allow overproduction of phosphonic acid antibiotics. The fourth project is focused on the development and use of mass-spectrometry to detect and quantify phosphonic acids and to characterize the biochemical reactions involved in their synthesis. The project will be housed in the new Institute for Genomic Biology at the University of Illinois, where the program project team will occupy a single, large contiguous laboratory.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
3P01GM077596-03S1
Application #
7932615
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Program Officer
Jones, Warren
Project Start
2009-09-30
Project End
2011-08-31
Budget Start
2009-09-30
Budget End
2011-08-31
Support Year
3
Fiscal Year
2009
Total Cost
$476,276
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Microbiology/Immun/Virology
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Parkinson, Elizabeth I; Tryon, James H; Goering, Anthony W et al. (2018) Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster via Metabologenomics. ACS Chem Biol 13:1029-1037
Ulrich, Emily C; Bougioukou, Despina J; van der Donk, Wilfred A (2018) Investigation of Amide Bond Formation during Dehydrophos Biosynthesis. ACS Chem Biol 13:537-541
Wang, Bin; Guo, Fang; Dong, Shi-Hui et al. (2018) Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat Chem Biol :
Goettge, Michelle N; Cioni, Joel P; Ju, Kou-San et al. (2018) PcxL and HpxL are flavin-dependent, oxime-forming N-oxidases in phosphonocystoximic acid biosynthesis in Streptomyces. J Biol Chem 293:6859-6868
Sun, H; Zhao, H; Ang, E L (2018) A coupled chlorinase-fluorinase system with a high efficiency of trans-halogenation and a shared substrate tolerance. Chem Commun (Camb) 54:9458-9461
McLaughlin, Martin I; van der Donk, Wilfred A (2018) Stereospecific Radical-Mediated B12-Dependent Methyl Transfer by the Fosfomycin Biosynthesis Enzyme Fom3. Biochemistry 57:4967-4971
Wang, Yajie; Ren, Hengqian; Zhao, Huimin (2018) Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit Rev Biochem Mol Biol 53:115-129
Born, David A; Ulrich, Emily C; Ju, Kou-San et al. (2017) Structural basis for methylphosphonate biosynthesis. Science 358:1336-1339
Si, Tong; Li, Bin; Comi, Troy J et al. (2017) Profiling of Microbial Colonies for High-Throughput Engineering of Multistep Enzymatic Reactions via Optically Guided Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J Am Chem Soc 139:12466-12473
Peck, Spencer C; Wang, Chen; Dassama, Laura M K et al. (2017) O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. J Am Chem Soc 139:2045-2052

Showing the most recent 10 out of 119 publications