It is now possible to direct the differentiation of pluripotent human stem cells into cardiomyocytes at a scale suitable for large experiments or small clinical trials. Despite this success, there are large gaps in our understanding of how signaling pathways converge on the nucleus to control cardiac differentiation. Furthermore, stem cell-derived cardiomyocytes are currently at a fetal stage of maturity, which may be poorly suited for modeling adult diseases or tissue repair. Project 3 addresses these issues with the following aims.
In Aim 1, we explore the biology of three candidate novel regulators of heart development identified by ChlPseq experiments. These include two transcription factors (MEIS2 and H0XB2) and a novel Wnt/b-catenin regulating protein (TMEM88). The genes will be knocked down in differentiating hESCs and in developing zebrafish embryos to determine their roles in cardiac differentiation and morphogenesis.
In Aim 2 we will utilize two lines of genetically modified hESCs that activate fluorescent protein expression when they differentiate to mesoderm (BRACHYURY knock-in) or first heart field cells (TBX5 knock-in). We will determine how their fates become restricted during differentiation in 2D and 3D culture and after transplantation in vivo. Additionally, we will use a Wnt/b-catenin reporter to track how this pathway positively and negatively regulates formation of these key cell types.
Aim 3 addresses the issue of cardiomyocyte maturation, beginning by exploring the role of 4 candidate miRNAs that are up-regulated during maturation. Next we will identify novel maturation-associated miRNAs through RNA-seq, and we will assess their function using over-expression, depletion and novel miRNA sensors.

Public Health Relevance

Pluripotent human stem cells allow us to study events in early human development, such as formation of the cardiovascular system, and they may provide building blocks for tissue repair. This project will identify novel factors that control the differentiation of hESCs to cardiac muscle cells and regulate their subsequent maturation into working muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM081619-10
Application #
9187462
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
2018-11-30
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
10
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Hofsteen, Peter; Robitaille, Aaron Mark; Strash, Nicholas et al. (2018) ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2:88-100
Moody, James D; Levy, Shiri; Mathieu, Julie et al. (2017) First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proc Natl Acad Sci U S A 114:10125-10130
Mathieu, Julie; Ruohola-Baker, Hannele (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541-551
Rabinowitz, Jeremy S; Robitaille, Aaron M; Wang, Yuliang et al. (2017) Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proc Natl Acad Sci U S A 114:E717-E726
Eschenhagen, Thomas; Bolli, Roberto; Braun, Thomas et al. (2017) Cardiomyocyte Regeneration: A Consensus Statement. Circulation 136:680-686
Ware, Carol B (2017) Concise Review: Lessons from Naïve Human Pluripotent Cells. Stem Cells 35:35-41
Palpant, Nathan J; Wang, Yuliang; Hadland, Brandon et al. (2017) Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep 20:1597-1608
Hoshino, Akina; Ratnapriya, Rinki; Brooks, Matthew J et al. (2017) Molecular Anatomy of the Developing Human Retina. Dev Cell 43:763-779.e4
Kim, Yong Kyun; Refaeli, Ido; Brooks, Craig R et al. (2017) Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development. Stem Cells 35:2366-2378
Artoni, Filippo; Kreipke, Rebecca E; Palmeira, Ondina et al. (2017) Loss of foxo rescues stem cell aging in Drosophila germ line. Elife 6:

Showing the most recent 10 out of 114 publications