The major aim of this Core is to provide a facility for novel optical instrumentation to the investigators of this Program Project. The primary function of the Core will be to assist in experiments that require expertise and specialized equipment not available in the individual sub-project laboratories. The members of the Core will provide guidance and expert help to the different members of the Program Project in using Optical Trapping, Total Internal Reflection Microscopy (TIRF) and Total Internal Reflection Polarized Fluorescence Microscopy (polTIRF). This state of the art shared facility provides methods for measuring the mechanical properties of individual motor proteins and the spatial orientation of fluorescent probes linked to subdomains of individual engineered proteins. The core will further develop these techniques by testing several methods for obtaining three dimensional data from TIRF images, by combining the trap with polTIRPF to measure the orientation of single motor molecules as they proceed through their enzymatic cycles under varying load, improve the long term spatial resolution and stiffness of the trap. In vitro analysis of single wild type and engineered motor molecules will unambiguously measure fundamental motor properties such as stiffness, orientation changes, unitary force, step length and kinetics as a function of strain and relate these properties to structural features of the protein.

Public Health Relevance

Advanced light microscopy and optical trapping provide unique information at the single molecule level. These novel assays will be used here to understand the underlying mechanisms of cell motility and membrane trafficking, both essential processes for normal function in eukaryotic cells. Defects in either of these processes lead to a wide range of diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM087253-09
Application #
8378178
Study Section
Special Emphasis Panel (ZRG1-CB-P)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$138,838
Indirect Cost
$50,686
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
McIntosh, Betsy B; Pyrpassopoulos, Serapion; Holzbaur, Erika L F et al. (2018) Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 28:236-248.e5
Moore, Andrew S; Holzbaur, Erika L F (2018) Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. Curr Opin Physiol 3:94-100
Woody, Michael S; Capitanio, Marco; Ostap, E Michael et al. (2018) Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Opt Express 26:11181-11193
Lee, In-Gyun; Olenick, Mara A; Boczkowska, Malgorzata et al. (2018) A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity. Nat Commun 9:986
Lippert, Lisa G; Dadosh, Tali; Hadden, Jodi A et al. (2017) Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proc Natl Acad Sci U S A 114:E4564-E4573
Pyrpassopoulos, Serapion; Shuman, Henry; Ostap, E Michael (2017) Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes. Mol Biol Cell 28:3315-3322
Lewis, John H; Jamiolkowski, Ryan M; Woody, Michael S et al. (2017) Deconvolution of Camera Instrument Response Functions. Biophys J 112:1214-1220
Greenberg, Michael J; Shuman, Henry; Ostap, E Michael (2017) Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers. Methods Mol Biol 1486:483-509
Hendricks, Adam G; Goldman, Yale E (2017) Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells. Methods Mol Biol 1486:537-552
Kast, David J; Dominguez, Roberto (2017) The Cytoskeleton-Autophagy Connection. Curr Biol 27:R318-R326

Showing the most recent 10 out of 42 publications