The overall goal of this Program Project is to understand in detail how integrin-mediated adhesions mature and how this process determines signaling outputs. Adhesion maturation is highly dependent on physical forces, whether from endogenous myosin or applied externally through the extracellular matrix. Thus, comparison of normal adhesion ultrastructure and dynamics with responses to applied force will elucidate mechanisms of mechanotransduction. This Program Project will develop a model for mechanotransduction at matrix adhesions that integrates adhesion ultrastructure, biochemical interactions, temporal and spatial dynamics of multiprotein assemblies and signaling networks. We will analyze mechanotransduction in the context of cell migration as an important physiological output of adhesion mechanics and signaling. To achieve this, we have formed a unique team of long-standing collaborators who will implement a multifaceted experimental approach that includes molecular cell biology, biochemistry, biophysical approaches, material science, computational and mathematical analysis, and correlated high-resolution light and electron microscopy.

Public Health Relevance

Matrix adhesions sense their mechanical environment and thereby modulate signals that regulate proliferation, differentiation, migration, and cell death. Shifts in force, therefore, can produce developmental defects and contribute to vascular and chronic inflammatory diseases, tumor formation and metastasis. Despite its importance, the mechanism underlying the transduction of force to biological signal is not understood. Our multifaceted approach will reveal its mechanistic and structural basis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-D (40))
Program Officer
Nie, Zhongzhen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Chen, Zhenguo; Sun, Lei; Zhang, Zhihong et al. (2017) Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. Proc Natl Acad Sci U S A 114:E8184-E8193
Bachir, Alexia I; Horwitz, Alan Rick; Nelson, W James et al. (2017) Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 9:
Anderson, Karen L; Page, Christopher; Swift, Mark F et al. (2017) Nano-scale actin-network characterization of fibroblast cells lacking functional Arp2/3 complex. J Struct Biol 197:312-321
Xu, Xiao-Ping; Kim, Eldar; Swift, Mark et al. (2016) Three-Dimensional Structures of Full-Length, Membrane-Embedded Human ?(IIb)?(3) Integrin Complexes. Biophys J 110:798-809
Brenner, Michael D; Zhou, Ruobo; Conway, Daniel E et al. (2016) Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing. Nano Lett 16:2096-102
Kumar, Abhishek; Ouyang, Mingxing; Van den Dries, Koen et al. (2016) Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J Cell Biol 213:371-83
Vertelov, Grigory; Gutierrez, Edgar; Lee, Sin-Ae et al. (2016) Rigidity of silicone substrates controls cell spreading and stem cell differentiation. Sci Rep 6:33411
Bober, Brian G; Gutierrez, Edgar; Plaxe, Steven et al. (2015) Combinatorial influences of paclitaxel and strain on axonal transport. Exp Neurol 271:358-67
Han, Sangyoon J; Oak, Youbean; Groisman, Alex et al. (2015) Traction microscopy to identify force modulation in subresolution adhesions. Nat Methods 12:653-6
Lee, Kwonmoo; Elliott, Hunter L; Oak, Youbean et al. (2015) Functional hierarchy of redundant actin assembly factors revealed by fine-grained registration of intrinsic image fluctuations. Cell Syst 1:37-50

Showing the most recent 10 out of 27 publications