Tissue of origin effects on reprogramming Tissue of origin has been shown to influence the efficiency of reprogramming and the behavior of induced pluripotent stem cells (iPSCs). For example, melanocytes reprogram more readily than fibroblasts, and hematopoietic stem and progenitor cells give rise to IPSC much more efficiently than terminally differentiated B and T cells. Furthermore, recent studies from stringently defined mouse reprogramming models show that cell-type of origin-specific differences in gene expression, differentiation potential and DNA methylation patterns can be observed in eariy passage IPSCs, leading to a hypothesis that an epigenetic memory of the past fate persists in iPSCs, although it appears to be transient and becomes alleviated upon continuous passaging. Although the mechanistic basis of these differences is not well understood, it is becoming clear that tissue-of-origin-expressed transcription factors, proliferative properties and epigenetic differences are poised to play a pivotal tissue-of-origin specific differences in the efficiency of reprogramming and developmental potential of the resultant iPSCs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM099130-04
Application #
8730681
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
City
Stanford
State
CA
Country
United States
Zip Code
94304
Kim, Kun-Yong; Tanaka, Yoshiaki; Su, Juan et al. (2018) Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nat Commun 9:2583
Patterson, Benjamin; Tanaka, Yoshiaki; Park, In-Hyun (2017) New Advances in Human X chromosome status from a Developmental and Stem Cell Biology. Tissue Eng Regen Med 14:643-652
Zhu, Wanjun; Zhang, Xiao-Yan; Marjani, Sadie L et al. (2017) Next-generation molecular diagnosis: single-cell sequencing from bench to bedside. Cell Mol Life Sci 74:869-880
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun et al. (2017) Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells. Circ Res 121:1237-1250
Zhao, Ming-Tao; Chen, Haodong; Liu, Qing et al. (2017) Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc Natl Acad Sci U S A 114:E11111-E11120
Xiang, Yangfei; Tanaka, Yoshiaki; Patterson, Benjamin et al. (2017) Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell 21:383-398.e7
Churko, Jared M; Lee, Jaecheol; Ameen, Mohamed et al. (2017) Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods. Nat Biomed Eng 1:826-837
Matsa, Elena; Burridge, Paul W; Yu, Kun-Hsing et al. (2016) Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell Stem Cell 19:311-25
Hu, Shijun; Zhao, Ming-Tao; Jahanbani, Fereshteh et al. (2016) Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight 1:
Hysolli, Eriona; Tanaka, Yoshiaki; Su, Juan et al. (2016) Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family. Stem Cell Reports 7:43-54

Showing the most recent 10 out of 50 publications