This proposal seeks to characterize the cellular mechanisms underlying neuronal development and plasticity in Drosophila. It investigates the roles of second messenger systems, membrane excitability, membrane cycling, and cell adhesion, using methods of genetics, physiology, and cell biology. The proposal addresses a wide variety of issues relating to neuronal development and plasticity. It contains 9 specific aims, and the principal issues addressed are: 1) the role of second messenger systems in organizing the neuronal cytoskeleton and in the physiology of the neuromuscular junction; 2) the influence of nerve excitability and activity on cytoskeletal organization in cultured neurons and flight muscles; 3) the role of membrane vesicle proteins in regulating the addition of new membranes in neuronal development (e.g. as reflected in growth cone formation and neurite growth rates); 4) the role of the cytoplasmic tyrosine kinase abl and related proteins in cytoskeletal organization and neuronal adhesion.

Project Start
2000-04-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
17
Fiscal Year
2000
Total Cost
$168,179
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
041294109
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Wessels, Deborah; Kuhl, Spencer; Soll, David R (2009) 2D and 3D quantitative analysis of cell motility and cytoskeletal dynamics. Methods Mol Biol 586:315-35
Lin, Jim Jung-Ching; Li, Yan; Eppinga, Robbin D et al. (2009) Chapter 1: roles of caldesmon in cell motility and actin cytoskeleton remodeling. Int Rev Cell Mol Biol 274:1-68
Wessels, Deborah J; Kuhl, Spencer; Soll, David R (2009) Light microscopy to image and quantify cell movement. Methods Mol Biol 571:455-71
Ueda, Atsushi; Wu, Chun-Fang (2009) Effects of social isolation on neuromuscular excitability and aggressive behaviors in Drosophila: altered responses by Hk and gsts1, two mutations implicated in redox regulation. J Neurogenet 23:378-94
Ueda, Atsushi; Wu, Chun-Fang (2009) Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant. J Neurogenet 23:185-99
Soll, David R; Wessels, Deborah; Kuhl, Spencer et al. (2009) How a cell crawls and the role of cortical myosin II. Eukaryot Cell 8:1381-96
Lusche, Daniel F; Wessels, Deborah; Soll, David R (2009) The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. Cell Motil Cytoskeleton 66:567-87
Ueda, Atsushi; Wu, Chun-Fang (2008) Effects of hyperkinetic, a beta subunit of Shaker voltage-dependent K+ channels, on the oxidation state of presynaptic nerve terminals. J Neurogenet 22:1-13
Lee, J; Ueda, A; Wu, C-F (2008) Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila. Neuroscience 154:1283-96
Volk, A Paige Davis; Heise, Christine K; Hougen, Jami L et al. (2008) ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem 283:34315-26

Showing the most recent 10 out of 179 publications