Diagnosis and treatment of many genetic diseases is hindered by variation in disease symptoms. The reasons for this variation are often unknown because systematic studies have not been undertaken. The goal of this Program Project is to elucidate mechanisms underlying normal phenotypic resilience and the instability that occurs when such mechanisms are lost in the disease state. We hypothesize that variation can result from failure of mechanisms that normally buffer against noise in developmental processes, for example stochastic variation in gene activities and cellular read-outs, and thus assure phenotypic stability in healthy children. We test this hypothesis in three Projects (Projects), using the zebrafish, a premiere model organism pioneered by this group at the University of Oregon. The projects take advantage of attributes of the zebrafish for developmental genetics analyses, including exquisite time-lapse microscopy of transgenically labeled fish to follow developmental events and perturbations in real time, assays of macromolecular complex formation, genome-wide analyses of cell signaling events, and assessment of environmental interactions that modulate host gene expression. These studies will elucidate the nature of events leading to variability in disease symptoms. Project1 focuses on variation In Fraser syndrome, a rare inherited disorder characterized by craniofacial and pharyngeal epithelial disruptions that show a remarkable degree of variation, both among affected individuals and on the left and right sides of the same individual. Proposed studies will explore how failure of epithelial-mesenchymal interactions results in differences in craniofacial skeletal development and will reveal genes responsible for the stability and resilience seen under normal conditions. Project2 tests a novel hypothesis for phenotypic variation with Usher syndrome, the most prevalent cause of hereditary deaf-blindness, hypothesizing that it results from disruption of complexes of Usher proteins that cause cellular stress that leads to stochastic cell death. Project3 investigates phenotypic variation associated with Hirschsprung disease, the leading cause of intestinal aganglionosis, exploring the hypothesis that the enteric nervous system regulates composition of intestinal bacterial communities and that altered communities contribute to disease progression by promoting inflammation and amplifying intestinal motility defects. Together with support of four Core Units, this Program Project will provide novel insights into three specific diseases and develop a new understanding of the mechanisms underlying disease variability that will promote better disease diagnosis and treatment.

Public Health Relevance

Many human diseases show variable symptoms, hindering diagnosis and treatment. This Program Project examines the reasons for symptom variability in models of three diseases - Fraser syndrome, Usher syndrome, and Hirschsprung disease - with the goal of improving diagnosis and treatment.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD022486-27
Application #
8737024
Study Section
Special Emphasis Panel (ZHD1-DSR-Y (50))
Program Officer
Henken, Deborah B
Project Start
1987-02-01
Project End
2018-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
27
Fiscal Year
2014
Total Cost
$1,508,248
Indirect Cost
$468,077
Name
University of Oregon
Department
Neurosciences
Type
Other Domestic Higher Education
DUNS #
948117312
City
Eugene
State
OR
Country
United States
Zip Code
97403
Ferreira, Carlos R; Xia, Zhi-Jie; Clément, Aurélie et al. (2018) A Recurrent De Novo Heterozygous COG4 Substitution Leads to Saul-Wilson Syndrome, Disrupted Vesicular Trafficking, and Altered Proteoglycan Glycosylation. Am J Hum Genet 103:553-567
Logan, Savannah L; Dudley, Christopher; Baker, Ryan P et al. (2018) Automated high-throughput light-sheet fluorescence microscopy of larval zebrafish. PLoS One 13:e0198705
Clément, Aurélie; Blanco-Sánchez, Bernardo; Peirce, Judy L et al. (2018) Cog4 is required for protrusion and extension of the epithelium in the developing semicircular canals. Mech Dev :
Parthasarathy, Raghuveer (2018) Monitoring microbial communities using light sheet fluorescence microscopy. Curr Opin Microbiol 43:31-37
Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L et al. (2018) Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development 145:
Dona, Margo; Slijkerman, Ralph; Lerner, Kimberly et al. (2018) Usherin defects lead to early-onset retinal dysfunction in zebrafish. Exp Eye Res 173:148-159
Blanco-Sánchez, Bernardo; Clément, Aurélie; Fierro Jr, Javier et al. (2018) Grxcr1 Promotes Hair Bundle Development by Destabilizing the Physical Interaction between Harmonin and Sans Usher Syndrome Proteins. Cell Rep 25:1281-1291.e4
Rolig, Annah S; Sweeney, Emily Goers; Kaye, Lila E et al. (2018) A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish. Elife 7:
Logan, Savannah L; Thomas, Jacob; Yan, Jinyuan et al. (2018) The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci U S A 115:E3779-E3787
Ganz, J; Baker, R P; Hamilton, M K et al. (2018) Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility. Neurogastroenterol Motil 30:e13351

Showing the most recent 10 out of 323 publications