The overall objective of this research component is to investigate the high-energy biochemical mechanisms whereby the perinatal brain is damaged by hypoxia-ischemia and how brain injury can be prevented or reduced through specific modalities of therapy.
Specific Aims i nclude: 1) to characterize the earliest alterations in high-energy phosphate reserves which occur during perinatal cerebral hypoxia-ischemia and to correlate these changes with perturbations in cerebral energy utilization, cerebral glucose utilization, glutamate and nitric oxide neurotoxicity, and intracellular calcium accumulation; 2) to correlate the concentrations in cerebral high-energy phosphate reserves and the changes which occur during hypoxia-ischemia using 31P magnetic resonance (MR) spectroscopic methods and enzymatic, fluorometric techniques; 3) to characterize the secondary (delayed) energy failure which occurs during recovery from perinatal cerebral hypoxia-ischemia and to correlate the alterations with the presence and severity of hypoxia-ischemic brain damage; 4) to ascertain underlying biochemical mechanisms whereby the glucocorticosteroid, dexamethasone, protects the perinatal brain from hypoxic-ischemic damage; 5) to determine the protective influence of magnesium sulfate on perinatal hypoxic-ischemic brain damage and, if so, to ascertain its mechanism of action; and 6) to investigate further the presence and extend of alterations in diffusion-weighted and T2-weighted imaging during recovery from perinatal cerebral hypoxia-ischemia and to correlate any changes with the nature and extent of cerebral edema and associated neuropathologic alterations. Seven-days postnatal rats will undergo unilateral cerebral hypoxia-ischemia, during and following which the animals will undergo those procedures necessary to obtain sequential 31P and 1H NMR spectra which will allow for measurements of the alterations in high-energy phosphate reserves and other metabolites which result from the insult. Other animals will undergo MR imaging at specific intervals following cerebral hypoxia-ischemia. Other experiments will elucidate the neuroprotective effect of dexamethasone, magnesium sulfate, and L-NAME on hypoxic-ischemic brain damage in the developing rat. Analytic procedures will include sequential measures with NMR spectroscopy as well as brain tissue analysis of high-energy phosphate reserves and other metabolites using enzymatic, fluorometric techniques.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Pennsylvania State University
United States
Zip Code
Leroy, Claire; Pierre, Karin; Simpson, Ian A et al. (2011) Temporal changes in mRNA expression of the brain nutrient transporters in the lithium-pilocarpine model of epilepsy in the immature and adult rat. Neurobiol Dis 43:588-97
Sen, Ellora; Basu, Anirban; Willing, Lisa B et al. (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 3:e00062
Simpson, Ian A; Carruthers, Anthony; Vannucci, Susan J (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766-91
Jin, Yuxuan; Silverman, Ann-Judith; Vannucci, Susan J (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29:373-84
Kremlev, Sergey G; Roberts, Rebecca L; Palmer, Charles (2007) Minocycline modulates chemokine receptors but not interleukin-10 mRNA expression in hypoxic-ischemic neonatal rat brain. J Neurosci Res 85:2450-9
Zhang, X; Surguladze, N; Slagle-Webb, B et al. (2006) Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 54:795-804
Nehlig, Astrid; Rudolf, Gabrielle; Leroy, Claire et al. (2006) Pentylenetetrazol-induced status epilepticus up-regulates the expression of glucose transporter mRNAs but not proteins in the immature rat brain. Brain Res 1082:32-42
Hurn, Patricia D; Vannucci, Susan J; Hagberg, Henrik (2005) Adult or perinatal brain injury: does sex matter? Stroke 36:193-5
Kremlev, Sergey G; Palmer, Charles (2005) Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 162:71-80
Basu, Anirban; Lazovic, Jelena; Krady, J Kyle et al. (2005) Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J Cereb Blood Flow Metab 25:17-29

Showing the most recent 10 out of 55 publications