This proposal is integral to the overall PPG theme to study fetal and adult adaptations to long-term hypoxia (LTH) at high altitude. Protection is needed against cerebral insults not only in the adult but also in the fetus exposed to systolic hypertension during LTH. Adrenergic neurons, arising from the superior cervical ganglion (SCG), are an important component of the regulation of cerebral blood vessel contractility and blood flow under this stress. Furthermore, these neurons regulate cerebral blood flow under stress conditions such as hypoxemia and hypertension, reducing the risk of stroke, and attenuating severity of pathology following subarachnoid hemmorhage. Our earlier published data show that adrenergic nerve function in middle cerebral arteries (MCA) is facilitated via neuronal nitric oxide synthase (nNOS) containing nerves co-innervating the cerebral vasculature. These data suggest that there is a complex communication pathway between these two nerve types. We now are focusing on the SCG as it is a well established and efficient model for studying the complex processes that control intracellular calcium ([Ca2+]i) in adrenergic nerves and modulation by nNOS nerves. The function of adrenergic nerves depends in part on calcium induced calcium release (CICR) from the smooth endoplasmic reticulum (SER). CICR amplifies increased [Ca2+]i caused by influx through Ca2+ channels and requires that SER be filled by Ca 2+ influx through store operated Ca2+ channels (SOCC) and SER Ca 2+-ATPases (SERCAs). The faciliatory function of nNOS nerves on adrenergic nerves in the SCG may, in part, be due to amplification of the CICR process. We have shown that the function of faciliatory nNOS nerves declines during LTH at high altitude, which is partly related to a decline in nNOS protein levels. These observations may have implications for the distribution of blood flow during LTH acclimatization at high altitude. Studying mechanisms underlying the regulation of adrenergic nerves is vital to human health and development -- from fetus to adult. The project goal is to determine mechanisms underlying the impact of LTH and development on intracellular calcium ([Ca2+]) signaling in adrenergic neurons arising from the SCG and modulation of these processes by nNOS nerves. The governing hypothesis is: positive modulation of adrenergic nerves via nNOS nerves through the CICR process or refilling of SER Ca 2+ stores declines in response to LTH, We will use a range of techniques, instrumental, pharmacological and molecular to probe the mechanisms by which LTH stress may alter the refilling of SER Ca 2+ stores and/or the signaling pathway responsible for modulating CICR in isolated sheep SCG cells. The four groups to be studied are: adult non-pregnant normoxic and high altitude acclimated, and near term fetus, normoxic and high altitude.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD031226-13
Application #
7373602
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
13
Fiscal Year
2007
Total Cost
$188,600
Indirect Cost
Name
Loma Linda University
Department
Type
DUNS #
009656273
City
Loma Linda
State
CA
Country
United States
Zip Code
92350
Liu, Taiming; Zhang, Meijuan; Terry, Michael H et al. (2018) Nitrite potentiates the vasodilatory signaling of S-nitrosothiols. Nitric Oxide 75:60-69
Pearce, William J (2018) Fetal Cerebrovascular Maturation: Effects of Hypoxia. Semin Pediatr Neurol 28:17-28
Pearce, W J (2018) A path well travelled may lead to better stroke recovery. Acta Physiol (Oxf) 223:e13061
Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M et al. (2018) Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia. Reprod Sci 25:230-238
Chuang, Tsai-Der; Sakurai, Reiko; Gong, Ming et al. (2018) Role of miR-29 in Mediating Offspring Lung Phenotype in a Rodent Model of Intrauterine Growth Restriction. Am J Physiol Regul Integr Comp Physiol :
Liu, Taiming; Schroeder, Hobe J; Wilson, Sean M et al. (2016) Local and systemic vasodilatory effects of low molecular weight S-nitrosothiols. Free Radic Biol Med 91:215-23
Myers, Dean A; Singleton, Krista; Kenkel, Christy et al. (2016) Gestational hypoxia modulates expression of corticotropin-releasing hormone and arginine vasopressin in the paraventricular nucleus in the ovine fetus. Physiol Rep 4:
Liu, Taiming; Schroeder, Hobe J; Zhang, Meijuan et al. (2016) S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism. Nitric Oxide 58:20-7
Vrancken, Kurt; Schroeder, Hobe J; Longo, Lawrence D et al. (2016) Postprandial lipids accelerate and redirect nitric oxide consumption in plasma. Nitric Oxide 55-56:70-81
Hu, Xiang-Qun; Huang, Xiaohui; Xiao, Daliao et al. (2016) Direct effect of chronic hypoxia in suppressing large conductance Ca(2+)-activated K(+) channel activity in ovine uterine arteries via increasing oxidative stress. J Physiol 594:343-56

Showing the most recent 10 out of 181 publications