The long-term goal of the project is to understand the mechanisms underlying the adverse effect of chronic hypoxia on uterine blood flow in pregnancy. Chronic hypoxia during the course of pregnancy is one of the most common insults to the maternal cardiovascular system and fetal development, and is associated with an increased risk of preeclampsia and fetal intrauterine growth restriction. Previous studies have demonstrated that hypoxia has profound effects on uterine vascular reactivity and inhibits pregnancyinduced adaptation of uterine artery contractility. Although molecular mechanisms remain poorty understood, recent studies have suggested genomic mechanisms of the steroid hormones, estrogen and progesterone in regulating pressure-dependent myogenic tone of the uterine artery in adaptation to pregnancy. Pressure-dependent myogenic contraction is an important physiological mechanism that regulates basal vascular tone and contributes significanfiy to the modulafion of organ blood flow. The preliminary studies demonstrated that long-term high altitude hypoxia during pregnancy significantly increased the myogenic reactivity in the uterine artery of pregnant sheep and eliminated the differences in pressure-induced myogenic tone in uterine arteries between nonpregnant and pregnant animals. The proposed studies will focus on the mechanisms and test the main hypothesis that chronic hypoxia inhibits the steroid hormones (estrogen and progesterone)-mediated adaptation of ERK1/2 and PKC signaling pathways, resulting in increased myogenic tone of the uterine artery in pregnancy. To test this hypothesis, three Specific Aims are proposed to determine whether and to what extent long-term high altitude hypoxia during pregnancy 1) inhibits steroids-mediated upregulation of ERK1/2 gene expression and downregulafion of the PKC activity in the uterine artery, 2) inhibits steroids-mediated downregulation of pressure-dependent myogenic tone in the uterine artery, and 3) whether chronic hypoxia has direct effects on the steroids-mediated responses in the uterine arteries. The results will provide exciting novel insights in biochemical, molecular, cellular, and pathophysiological adaptafion mechanisms involved in altering uteroplacental circulation in response to hypoxia in pregnancy, which has obvious clinical significance because the maladaptation of uterine circulation caused by chronic hypoxia in pregnancy is associated with fetal developmental abnormalities and maternal cardiovascular disorders.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
2P01HD031226-16
Application #
8015756
Study Section
Special Emphasis Panel (ZHD1-DSR-A (LL))
Project Start
2010-08-01
Project End
2015-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
16
Fiscal Year
2010
Total Cost
$209,105
Indirect Cost
Name
Loma Linda University
Department
Type
DUNS #
009656273
City
Loma Linda
State
CA
Country
United States
Zip Code
92350
Liu, Taiming; Zhang, Meijuan; Terry, Michael H et al. (2018) Nitrite potentiates the vasodilatory signaling of S-nitrosothiols. Nitric Oxide 75:60-69
Pearce, William J (2018) Fetal Cerebrovascular Maturation: Effects of Hypoxia. Semin Pediatr Neurol 28:17-28
Pearce, W J (2018) A path well travelled may lead to better stroke recovery. Acta Physiol (Oxf) 223:e13061
Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M et al. (2018) Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia. Reprod Sci 25:230-238
Chuang, Tsai-Der; Sakurai, Reiko; Gong, Ming et al. (2018) Role of miR-29 in Mediating Offspring Lung Phenotype in a Rodent Model of Intrauterine Growth Restriction. Am J Physiol Regul Integr Comp Physiol :
Liu, Taiming; Schroeder, Hobe J; Zhang, Meijuan et al. (2016) S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism. Nitric Oxide 58:20-7
Vrancken, Kurt; Schroeder, Hobe J; Longo, Lawrence D et al. (2016) Postprandial lipids accelerate and redirect nitric oxide consumption in plasma. Nitric Oxide 55-56:70-81
Hu, Xiang-Qun; Huang, Xiaohui; Xiao, Daliao et al. (2016) Direct effect of chronic hypoxia in suppressing large conductance Ca(2+)-activated K(+) channel activity in ovine uterine arteries via increasing oxidative stress. J Physiol 594:343-56
Blum-Johnston, Carla; Thorpe, Richard B; Wee, Chelsea et al. (2016) Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 310:L271-86
Goyal, Ravi; Billings, Tara L; Mansour, Trina et al. (2016) Vitamin D status and metabolism in an ovine pregnancy model: effect of long-term, high-altitude hypoxia. Am J Physiol Endocrinol Metab 310:E1062-71

Showing the most recent 10 out of 181 publications