Tendon transfer surgery is a common procedure to treat paralysis or paresis resulting from spinal cord injury, cerebral palsy or other neurological disorders. The tendon of a functioning muscle, sometimes even a direct antagonist, is sewn into the tendon of the weakened muscle to improve motor function in the desired direction. The recovery of motor function from these procedures can be limited and learning new motor patterns can be difficult. It is therefore important to develop quantitative assessment tools to measure the success of surgical manipulation of the musculoskeletal system and to track the progress of rehabilitation of individuals with injury to the peripheral motor apparatus. One such approach is the measurement of limb stiffness using robotic technology. This approach can potentially detect changes in musculoskeletal organization such as occurs with tendon transfer or fasciotomy as well as changes in proprioceptive circuits in the spinal cord and brainstem resulting from neurological disease. Stiffness measurements will be made on the hindlimbs of decerebrate cats after tendon transfer, fasciotomy and muscle reinnervation in order to establish the relationship between the manipulation of the motor system and the emergent mechanical properties. These measurements will then be used to evaluate adaptations of the motor system to the manipulation after a survival period. This approach can be readily adapted for use with human subjects, and potentially constitutes a powerful diagnostic tool. Among the several possible reasons for a less than satisfactory outcome of tendon transfer surgery, and one that appears not to have been considered until now, is that the relationships between the natural patterns of activation of the muscle and the mechanical feedback from the muscle are altered. This mismatch, rather than contributing to the retraining of muscular activation patterns, could result in suppression or reorganization of proprioceptive circuits. The proposed experiments have been designed to test the hypothesis that the altered timing of sensory information could limit recovery of function following tendon transfer. These experiments will utilize measurements of limb stiffness as well as evaluations of individual proprioceptive pathways in decerebrate cats.

Public Health Relevance

The results of this investigation will contribute to improved outcome of motor function following injury or surgery on the peripheral motor system, and to the development of improved evaluation of tendon transfer surgery and time course of recovery following injury and repair of the musculoskeletal system.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
2P01HD032571-16
Application #
8353693
Study Section
Special Emphasis Panel (ZHD1-RRG-K (40))
Project Start
1997-02-01
Project End
2017-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
16
Fiscal Year
2012
Total Cost
$211,619
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Eftekhar, Amir; Norton, James J S; McDonough, Christine M et al. (2018) Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics :
Norton, James J S; Wolpaw, Jonathan R (2018) Acquisition, Maintenance, and Therapeutic Use of a Simple Motor Skill. Curr Opin Behav Sci 20:138-144
Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A et al. (2018) Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles. J Neurophysiol 119:1166-1185
Chen, Yi; Chen, Lu; Wang, Yu et al. (2017) Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors. J Neurosci 37:8198-8206
Pantall, Annette; Hodson-Tole, Emma F; Gregor, Robert J et al. (2016) Increased intensity and reduced frequency of EMG signals from feline self-reinnervated ankle extensors during walking do not normalize excessive lengthening. J Neurophysiol 115:2406-20
Chen, Xiang Yang; Wang, Yu; Chen, Yi et al. (2016) Ablation of the inferior olive prevents H-reflex down-conditioning in rats. J Neurophysiol 115:1630-6
Gordon, Tessa; English, Arthur W (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 43:336-50
Zhu, Xiya; Ward, Patricia J; English, Arthur W (2016) Selective Requirement for Maintenance of Synaptic Contacts onto Motoneurons by Target-Derived trkB Receptors. Neural Plast 2016:2371893
Sabatier, Manning J; English, Arthur W (2015) Pathways Mediating Activity-Induced Enhancement of Recovery From Peripheral Nerve Injury. Exerc Sport Sci Rev 43:163-71
Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G et al. (2015) Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat. J Neurophysiol 114:2682-702

Showing the most recent 10 out of 93 publications