We proposed that SIDS results from abnormalities in the ventral medulla that interfere with normal protective cardiorespiratory reflexes. In this project we shall disrupt experimentally in piglets, at two developmental times, the homologue of the human arcuate nucleus found to be abnormal in SIDS victims. This homologue is proposed to contain the retrotrapezoid nucleus (RTN) and parapyramidal regions, the medullary raphe region, and the central chemoreceptor regions of the caudal ventrolateral medulla. In adult animals, disruption of the RTN/parapyramidal and raphe regions is known to diminish respiratory output and the sensitivity of the respiratory response to increased carbon dioxide. The magnitude of the effects is greater in anesthesia. Denervation of peripheral chemoreceptors magnifies the deleterious effects of this disruption in adult animals; when performed in newborn animals with intact brainstem function, it results in hypoventilation, more frequent apneas, and death. We shall, in the decerebrate piglet with and without intact carotid bodies, alter arcuate homologue function by microinjection of 1) an excitatory amino acid neurotoxin to produce lesions, and 2) muscarinic and ionotropic glutamate agonists/antagonists, and thyrotropin releasing-hormone. Phrenic nerve output and blood pressure in the baseline state and their responses to hypercapnia and asphyxia will be measured. In the unanesthetized chronic piglet preparations with and without intact carotid bodies, we will examine the effect of arcuate homologue lesions on breathing and blood pressure during natural wakefulness and sleep and on the responses to hypercapnia and asphyxia. Our goal is to examine the relative roles of arcuate homologue neurons and carotid body inputs on breathing and blood pressure in the absence of anesthesia and in natural sleep and wakefulness. In respect to the Triple Risk Model for SIDS pathogenesis, we are 1) experimentally creating a vulnerability by means of our lesions or injections, at 2) two separate developmental ages, and 3) examining, as exogenous stresses, responses to hypercapnia and asphyxia in wakefulness and sleep with and without afferent input from the carotid body.

Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Dosumu-Johnson, Ryan T; Cocoran, Andrea E; Chang, YoonJeung et al. (2018) Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. Elife 7:
Babb, Jessica A; Linnros, Sofia E; Commons, Kathryn G (2018) Evidence for intact 5-HT1A receptor-mediated feedback inhibition following sustained antidepressant treatment in a rat model of depression. Neuropharmacology 141:139-147
Darnall, Robert A; Chen, Xi; Nemani, Krishnamurthy V et al. (2017) Early postnatal exposure to intermittent hypoxia in rodents is proinflammatory, impairs white matter integrity, and alters brain metabolism. Pediatr Res 82:164-172
Tenpenny, Richard C; Commons, Kathryn G (2017) What Gene Mutations Affect Serotonin in Mice? ACS Chem Neurosci 8:987-995
Cerpa, Veronica J; Wu, Yuanming; Bravo, Eduardo et al. (2017) Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience 344:1-14
Ehlinger, Daniel G; Commons, Kathryn G (2017) Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities. Eur J Neurosci 46:2416-2425
Panzini, Chris M; Ehlinger, Daniel G; Alchahin, Adele M et al. (2017) 16p11.2 deletion syndrome mice perseverate with active coping response to acute stress - rescue by blocking 5-HT2A receptors. J Neurochem 143:708-721
Commons, Kathryn G; Cholanians, Aram B; Babb, Jessica A et al. (2017) The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem Neurosci 8:955-960
Haynes, Robin L; Frelinger 3rd, Andrew L; Giles, Emma K et al. (2017) High serum serotonin in sudden infant death syndrome. Proc Natl Acad Sci U S A 114:7695-7700
Guo, Yue-Ping; Commons, Kathryn G (2017) Serotonin neuron abnormalities in the BTBR mouse model of autism. Autism Res 10:66-77

Showing the most recent 10 out of 143 publications