The pregnant women faces a unique physiological challenge to reorganize the maternal uterine vascular network to accommodate the metabolic demands of the feto-placental and uteroplacental blood flow by angiogenic growth factors (with particular focus on bFGF and VEGF) and the vascular regulator nitric oxide. This grant has two overall Specific Aims: 1) to establish molecular and cellular models of the regulation of the vascular endothelium at the maternal-fetal interface; and 2) to investigate these basic mechanisms in clinical settings where changes in placental regulator factors are hypothesized to control vascular adaptation to pregnancy. To accomplish these overall Aims, we propose four integrated projects, two scientific cores, and one administrative core.
Our first Aim will primarily be addressed by the first two projects: Project I: Signaling mechanisms controlling NO production and mitogenesis in Uterine Artery Endothelial Cells (UAEC) and Ovine Fetal Placental Artery Endothelial Cells (OFPAEC). Project II: Angiogenic factor (bFGF and VEGF) and shear stress mediated changes in placental and uterine artery nitric oxide production. In these two highly integrated projects, we will utilize well-established cell lines and experimental systems derived by the project leaders from pregnant sheep. We will identify in vitro the signaling pathways used by angiogenic factors as well as their modulation by pregnancy, and address the mechanisms by which flow/shear stress mediate changes in endothelial cell expression of eNOS and NO production. In parallel to these basic studies, we propose two projects to address how pathophysiological perturbation of angiogenic control contributes significantly to the degradation of fetal health and well-being. Project III: Ethanol exposure on nitric oxide production and angiogenesis in the human placenta. Project IV: Trophoblast regulation of angiogenesis in the diabetic placenta. In these two highly integrated projects, we will utilize established endothelial cell lines and experimental systems derived by the project leaders from pregnant sheep. We will identify in vitro the signaling pathways used by angiogenic factors as well as their modulation by pregnancy, and address the mechanisms by which flow/shear stress mediated changes in endothelial cell expression of eNOS and NO production. In parallel to these basic studies, we propose two projects to address how pathophysiological perturbation of angiogenic control contributes significantly to the degradation of fetal health and well-being. Project III: Ethanol exposure on nitric oxide production and angiogenesis in the human placenta. Project IV: Trophoblast regulation of angiogenesis in the diabetic placenta. Ultimately, Projects III and IV will converge with Projects I and II, in that intracellular signaling mechanisms uncovered in the latter can be explored as the underlying causes of pathophysiological changes in the former clinical settings. The overall goals and integrated operation of the four Projects will be assured by the Administrative Core, and through usage of standardized assays and methods in all four Projects of Experimental Cores, Molecular Culture/Angiogenesis. Data from these studies will further our understanding of the basic control of placental and uterine angiogenesis and mechanisms contributing to fetal pathophysiology in diabetes, ethanol exposure, as well as pre-eclampsia and IUGR.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD038843-03
Application #
6660405
Study Section
Special Emphasis Panel (ZHD1-MCHG-B (03))
Program Officer
Ilekis, John V
Project Start
2001-07-01
Project End
2006-06-30
Budget Start
2003-07-01
Budget End
2004-06-30
Support Year
3
Fiscal Year
2003
Total Cost
$856,790
Indirect Cost
Name
University of Wisconsin Madison
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Zywicki, Micaela E; Blohowiak, Sharon E; Magness, Ronald R et al. (2018) Impact of the ovarian cycle and pregnancy on plasma chemistry values in ewes. J Vet Diagn Invest 30:238-244
Zou, Qing-Yun; Zhao, Ying-Jie; Zhou, Chi et al. (2018) G Protein ? Subunit 14 Mediates Fibroblast Growth Factor 2-Induced Cellular Responses in Human Endothelial Cells. J Cell Physiol :
Degner, Kenna; Magness, Ronald R; Shah, Dinesh M (2017) Establishment of the Human Uteroplacental Circulation: A Historical Perspective. Reprod Sci 24:753-761
Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun et al. (2017) ITE inhibits growth of human pulmonary artery endothelial cells. Exp Lung Res 43:283-292
Ampey, Bryan C; Ampey, Amanda C; Lopez, Gladys E et al. (2017) Cyclic Nucleotides Differentially Regulate Cx43 Gap Junction Function in Uterine Artery Endothelial Cells From Pregnant Ewes. Hypertension 70:401-411
Li, Yan; Wang, Kai; Zou, Qing-Yun et al. (2017) ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR. Reprod Toxicol 74:181-188
Boeldt, D S; Bird, I M (2017) Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol 232:R27-R44
Zhou, Chi; Zou, Qing-Yun; Li, Hua et al. (2017) Preeclampsia Downregulates MicroRNAs in Fetal Endothelial Cells: Roles of miR-29a/c-3p in Endothelial Function. J Clin Endocrinol Metab 102:3470-3479
Landeros, Rosalina Villalon; Jobe, Sheikh O; Aranda-Pino, Gabrielle et al. (2017) Convergent ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) signalling mediate catecholoestradiol-induced proliferation of ovine uterine artery endothelial cells. J Physiol 595:4663-4676
Rozner, Ann E; Durning, Maureen; Kropp, Jenna et al. (2016) Macrophages modulate the growth and differentiation of rhesus monkey embryonic trophoblasts. Am J Reprod Immunol 76:364-375

Showing the most recent 10 out of 82 publications