During pregnancy, dramatic growth of fetal and placental vasculatures is required for remarkable increases in fetal and placental blood flows to supporting the developing fetus. During these processes, vascular endothelial cells reside under physiological chronic hypoxia (pCH), which is critical for cell homeostasis as more severe hypoxia is known to be associated with many endothelial dysfunction related diseases such hypertension and preeclampsia. VEGF and FGF2, two potent growth factors actively regulate many endothelial functions via protein kinases and also via G proteins including GNA11 and GNA14. Specifically, GNA11 has been shown to be required for VEGF-simulated growth of new blood vessels. GNA14 has also been implicated in human hypertension and preeclampsia. However, nothing is known regarding the actions of GNA14 in endothelial cells. To study the roles and underlying signaling mechanisms of GNA14 and GNA11 in mediating fetal endothelial functions, we propose to examine the roles of GNA14 and GNA11 in modulating pCH-enhanced vascular growth and vasodilatory actions in response to VEGF and FGF2 using primary HUVE and HUAE cell lines established under pCH (-20-25 days;37 C, 5% C02, 3% 02) and standard cell culture normoxia (-20-25 days;37 C, 5% C02, 95% air, SCCN). These studies are the first to systemically explore the role of GNA14 in mediating endothelial functions, and the role of GNA11 in mediating eNOS expression and activation. The findings of these studies will greatly advance our understanding of actions of GNA14 and GNA11 in human fetal angiogenic and endothelial vasodilatory functions, particularity under pCH, which will provide clues about novel targets for therapeutic intervention in these hypertension-related diseases.

Public Health Relevance

Normal fetal vascular growth and function are critical for fetal growth. G-protein subunits GNA11 and 14 have been implicated in mediating vascular growth and hypertension;however, little is known about their actions in endothelial cells. Thus, the goal of this application is to examine physiological roles of GNA14 and GNA11 in fetal endothelia, which will provide additional novel signaling therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
2P01HD038843-11A1
Application #
8616123
Study Section
Special Emphasis Panel (ZHD1-DSR-Z (MR))
Project Start
Project End
Budget Start
2013-08-15
Budget End
2014-05-31
Support Year
11
Fiscal Year
2013
Total Cost
$195,649
Indirect Cost
$63,867
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Zywicki, Micaela E; Blohowiak, Sharon E; Magness, Ronald R et al. (2018) Impact of the ovarian cycle and pregnancy on plasma chemistry values in ewes. J Vet Diagn Invest 30:238-244
Zou, Qing-Yun; Zhao, Ying-Jie; Zhou, Chi et al. (2018) G Protein ? Subunit 14 Mediates Fibroblast Growth Factor 2-Induced Cellular Responses in Human Endothelial Cells. J Cell Physiol :
Degner, Kenna; Magness, Ronald R; Shah, Dinesh M (2017) Establishment of the Human Uteroplacental Circulation: A Historical Perspective. Reprod Sci 24:753-761
Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun et al. (2017) ITE inhibits growth of human pulmonary artery endothelial cells. Exp Lung Res 43:283-292
Ampey, Bryan C; Ampey, Amanda C; Lopez, Gladys E et al. (2017) Cyclic Nucleotides Differentially Regulate Cx43 Gap Junction Function in Uterine Artery Endothelial Cells From Pregnant Ewes. Hypertension 70:401-411
Li, Yan; Wang, Kai; Zou, Qing-Yun et al. (2017) ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR. Reprod Toxicol 74:181-188
Boeldt, D S; Bird, I M (2017) Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol 232:R27-R44
Zhou, Chi; Zou, Qing-Yun; Li, Hua et al. (2017) Preeclampsia Downregulates MicroRNAs in Fetal Endothelial Cells: Roles of miR-29a/c-3p in Endothelial Function. J Clin Endocrinol Metab 102:3470-3479
Landeros, Rosalina Villalon; Jobe, Sheikh O; Aranda-Pino, Gabrielle et al. (2017) Convergent ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) signalling mediate catecholoestradiol-induced proliferation of ovine uterine artery endothelial cells. J Physiol 595:4663-4676
Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth et al. (2016) Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1. Hypertension 68:982-8

Showing the most recent 10 out of 82 publications