Morphology Core The Morphology Core is an independent and fully equipped laboratory capable of conducting a wide array of studies necessary to characterize tissue and cell morphology, as well as localize transgene and transgene products. This Core is directed by Dr. Peter Bell and is housed in 800 square feet of dedicated space and includes two fluorescent microscopes, one electron microscope, and all the equipment necessary to process tissues and cells for a wide array of histological analysis. The Core will provide extensive support to all three of the projects in the area of 1) preparation of tissues for histopathologic analysis, 2) special stains for more detailed characterization of pathologic specimens, 3) analysis of tissues for transgene expression using in situ hybridization and histochemical analysis of reporter genes [GFP and OTC];4) image analysis of GFP in whole liver and liver sections using the Xenogen technology;and 5) EM analysis of vector preps. Lay description. Each project will receive support from the Morphology Core in the analysis of tissues for toxicity and vector gene expression.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD057247-02
Application #
7802300
Study Section
Special Emphasis Panel (ZHD1)
Project Start
2009-04-01
Project End
2012-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
2
Fiscal Year
2009
Total Cost
$140,042
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ashley, Scott N; Somanathan, Suryanarayan; Hinderer, Christian et al. (2017) Alternative Start Sites Downstream of Non-Sense Mutations Drive Antigen Presentation and Tolerance Induction to C-Terminal Epitopes. J Immunol 198:4581-4587
Wang, Lili; Bell, Peter; Morizono, Hiroki et al. (2017) AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol Genet Metab 120:299-305
Yang, Yang; Wang, Lili; Bell, Peter et al. (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34:334-8
Bell, Peter; Wang, Lili; Chen, Shu-Jen et al. (2016) Effects of Self-Complementarity, Codon Optimization, Transgene, and Dose on Liver Transduction with AAV8. Hum Gene Ther Methods 27:228-237
Wang, Lili; Bell, Peter; Somanathan, Suryanarayan et al. (2015) Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Mol Ther 23:1877-87
Bissig-Choisat, Beatrice; Wang, Lili; Legras, Xavier et al. (2015) Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model. Nat Commun 6:7339
Mays, Lauren E; Wang, Lili; Lin, Jianping et al. (2014) AAV8 induces tolerance in murine muscle as a result of poor APC transduction, T cell exhaustion, and minimal MHCI upregulation on target cells. Mol Ther 22:28-41
Mikals, Kyle; Nam, Hyun-Joo; Van Vliet, Kim et al. (2014) The structure of AAVrh32.33, a novel gene delivery vector. J Struct Biol 186:308-17
Bryant, Laura M; Christopher, Devin M; Giles, April R et al. (2013) Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 24:55-64
Zhong, Li; Malani, Nirav; Li, Mengxin et al. (2013) Recombinant adeno-associated virus integration sites in murine liver after ornithine transcarbamylase gene correction. Hum Gene Ther 24:520-5

Showing the most recent 10 out of 26 publications