Crosstalk between the immune and reproductive systems dramatically impacts fertility. In particular, studies have shown that a tight spatiotemporal control of leukocyte infiltration into the ovary is pivotal for successful ovulation. Once infiltrated, the leukocytes differentiate into a cohort of pro- or anti-infiammatory cells in the preovulatory ovary and play critical roles in ovulation and luteal formation. In this study, we will test the hypothesis that progesterone (P4) and prostaglandins (PG) play pivotal roles in recruiting leukocytes into the preovulatory ovary.
Aim 1. To determine the mechanism(s) by which P4 and PG regulate WBC infiltration. We will first determine the roles of P4 and PG on WBC infiltration by treating cycling adult rats with RU486, indomethacin and vehicle, and measuring the effect on the numbers, populations and localization of infiltrating WBC by flow cytometry and immunohistochemistry together with a functional analysis of the expression of chemokines, cytokines, their receptors and cell adhesion molecules (CAMs) in serum, on ovarian cells and WBC by ELISA and qPCR.
Aim 2. To determine whether P4 and PG regulate WBC infiltration in primate ovary. In this Aim, we will investigate P4 and PG regulated WBC infiltration in primates. Similar to rodents, primates, including humans also require P4 and PG for normal ovulation. Therefore, we hypothesize that P4 and PG will regulate WBC infiltration in the primate ovary. The actions of P4 and PG will be inhibited by treating primates (Cynomolgous monkeys) with trilostane (3|3HSD inhibitor;inhibits progesterone synthesis), celecoxib (selective COX-2 inhibitor) or vehicle under ovarian stimulation. The effects on the numbers, populations and localization of WBC together with the expression of infiammatory mediators will be determined. Upon the identification of the P4- and PG-regulated WBC subtypes and infiammatory mediators in the monkey, the localization and expression patterns of their homologs will be determined in the human ovary.
Aim 3. To determine the regulatory mechanism of preovulatory splenic WBC release. We will identify the trigger(s) and the mechanism of action of splenic WBC release from spleen. We hypothesize that either LH, decreased concentration of circulating WBC or angiotensin-ll (the only known trigger of splenic leukocyte release) act as the trigger. To identify the trigger(s), ovariectomized rats will be treated with candidate triggers (LH and angiotensin-ll) or artificially reduce the concentration of circulating WBC by perfusing rats with plasma. The effects on splenic WBC release will be measured by counting WBC numbers in spleen and peripheral blood.

Public Health Relevance

Chronic anovulation affects up to 15% of the female US population, many of the causes not being accounted for. This study will identify a novel cause of anovulation resulting from defective ovarian inflammation, which will lead to develop a better treatment option for an ovulatory disorder.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DRG-D (41))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
United States
Zip Code
Lee-Thacker, Somang; Choi, Yohan; Taniuchi, Ichiro et al. (2018) Core Binding Factor ? Expression in Ovarian Granulosa Cells Is Essential for Female Fertility. Endocrinology 159:2094-2109
Hannon, Patrick R; Duffy, Diane M; Rosewell, Katherine L et al. (2018) Ovulatory Induction of SCG2 in Human, Nonhuman Primate, and Rodent Granulosa Cells Stimulates Ovarian Angiogenesis. Endocrinology 159:2447-2458
Bender, Hannah R; Trau, Heidi A; Duffy, Diane M (2018) Placental Growth Factor Is Required for Ovulation, Luteinization, and Angiogenesis in Primate Ovulatory Follicles. Endocrinology 159:710-722
Choi, Yohan; Rosewell, Katherine L; Brännström, Mats et al. (2018) FOS, a Critical Downstream Mediator of PGR and EGF Signaling Necessary for Ovulatory Prostaglandins in the Human Ovary. J Clin Endocrinol Metab 103:4241-4252
Park, Chan Jin; Chen, Guanglin; Koo, Yongbum et al. (2017) Generation and characterization of an estrogen receptor alpha-iCre knock-in mouse. Genesis 55:
Li, Fei-Xue; Yu, Jiao-Jiao; Liu, Ying et al. (2017) Induction of Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 During the Periovulatory Period in the Rat Ovary. Reprod Sci 24:1033-1040
Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh et al. (2017) Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity. Endocrinology 158:109-120
Choi, Yohan; Park, Ji Yeon; Wilson, Kalin et al. (2017) The expression of CXCR4 is induced by the luteinizing hormone surge and mediated by progesterone receptors in human preovulatory granulosa cells. Biol Reprod 96:1256-1266
Choi, Yohan; Wilson, Kalin; Hannon, Patrick R et al. (2017) Coordinated Regulation Among Progesterone, Prostaglandins, and EGF-Like Factors in Human Ovulatory Follicles. J Clin Endocrinol Metab 102:1971-1982
Kim, Soon Ok; Trau, Heidi A; Duffy, Diane M (2017) Vascular endothelial growth factors C and D may promote angiogenesis in the primate ovulatory follicle. Biol Reprod 96:389-400

Showing the most recent 10 out of 28 publications