This project is a renewal application for the Stanford Genome Technology Center Grant. We propose developing three sets of enabling technologies and applications that offer the ability to query the complexity of the human genome and molecular aspects of human disease at a much reduced cost. These innovative technologies and approaches, given their enormous cost savings, make the application of genomics in clinical medicine a realistic proposition. With these novel tools, biomedical research will be improved, the scope of biological and clinical questions which can be addressed will be expanded and the resulting discoveries in human disease processes will accelerate the steady evolution of improvements in the way medicine is practiced. The first effort will develop sensitive, specific and rapid biosensors for querying minute amounts of samples that can be readily implemented in clinical settings. These technologies are fast - often real time. They are label-free and rely on nano-scale detection systems to provide significant improvements in sensitivity and cost. They have the potential to be implemented in the clinic. The second effort will focus on high-throughput technologies for the discovery of genomic factors that affect diseases. These are massively parallel technologies. They are more comprehensive than existing approaches, allow for the simultaneous interrogation of multiple aspects of the genome, improve our ability to make new discoveries of the molecular factors contributing to disease, provide huge cost savings and are useful for research using many patient samples. The third effort focuses on discovering the complex mix of genetic/genomic factors that are relevant to disease and therapeutics using the yeast model system. We know that, for the vast majority of diseases, multiple genetic factors contribute to the risk, severity and outcome of disease. Their interactions and the mechanisms by which they act are not readily understood today and our model organism approach and accompanying technologies allow these questions to be addressed. Taken together, the efforts proposed here are highly synergistic, leverage the strengths of the Center and develop new strengths in what we term """"""""medical genomics"""""""" and molecular analysis for biomedical research. These efforts focus on having maximal impact on biomedical research and medicine.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Program Projects (P01)
Project #
5P01HG000205-23
Application #
8327882
Study Section
Special Emphasis Panel (ZHG1-HGR-M (J1))
Program Officer
Schloss, Jeffery
Project Start
1997-08-01
Project End
2013-09-22
Budget Start
2012-08-01
Budget End
2013-09-22
Support Year
23
Fiscal Year
2012
Total Cost
$8,299,749
Indirect Cost
$3,299,549
Name
Stanford University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Tóth, Eszter N; Lohith, Akshar; Mondal, Manas et al. (2018) Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells. J Biol Chem 293:4940-4951
Jalili, Roxana; Horecka, Joe; Swartz, James R et al. (2018) Streamlined circular proximity ligation assay provides high stringency and compatibility with low-affinity antibodies. Proc Natl Acad Sci U S A 115:E925-E933
Roy, Kevin R; Smith, Justin D; Vonesch, Sibylle C et al. (2018) Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 36:512-520
Emaminejad, Sam; Gao, Wei; Wu, Eric et al. (2017) Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci U S A 114:4625-4630
Smith, Justin D; Schlecht, Ulrich; Xu, Weihong et al. (2017) A method for high-throughput production of sequence-verified DNA libraries and strain collections. Mol Syst Biol 13:913
Jensen, Michael; Davis, Ronald (2017) RecJ 5' Exonuclease Digestion of Oligonucleotide Failure Strands: A ""Green"" Method of Trityl-On Purification. Biochemistry 56:2417-2424
Lau, Billy T; Ji, Hanlee P (2017) Single molecule counting and assessment of random molecular tagging errors with transposable giga-scale error-correcting barcodes. BMC Genomics 18:745
Shin, GiWon; Grimes, Susan M; Lee, HoJoon et al. (2017) CRISPR-Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis. Nat Commun 8:14291
Celaj, Albi; Schlecht, Ulrich; Smith, Justin D et al. (2017) Quantitative analysis of protein interaction network dynamics in yeast. Mol Syst Biol 13:934
Esfandyarpour, Rahim; DiDonato, Matthew J; Yang, Yuxin et al. (2017) Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proc Natl Acad Sci U S A 114:E1306-E1315

Showing the most recent 10 out of 217 publications